
Masaryk University
Faculty of Informatics

Data Structures in Lexicography

Ph.D. Thesis

Michal Měchura

Brno, 2024

Data Structures in Lexicography
Ph.D. Thesis

Michal Měchura

Supervisor: doc. Mgr. Pavel Rychlý, Ph.D.
Consultant: RNDr. Miloš Jakubíček, Ph.D.

Abstract

Dictionaries are reference tools which humans turn to in order to satisfy
their information needs with respect to the vocabulary of a natural language.
This thesis takes a critical look at the formal methods used in modern digital
lexicography for representing the structure of dictionaries in software. I do
this on two levels: data languages and data models.

At the level of data languages, the thesis identifies several problems with how
XML is used for encoding dictionaries. I analyse how dictionary content is
fundamentally different from other kinds of text and we argue that XML is
not a good fit for the requirements of lexicography. Crucially, I observe that
other data languages such as JSON and YAML do not meet those requirements
either. I propose an alternative language called Name-Value Hierarchy (NVH)
which represents dictionary content more efficiently.

At the level of data models, the thesis critiques the over-reliance on tree
structures in lexicography. Tree structures, while easy to serialise in
languages such as XML, do not provide a satisfactory representation for some
phenomena that occur in dictionaries, such as entry-to-entry cross-
references. I propose an alternative, partially graph-based data model called
DMLex which is currently in the process of being standardised by OASIS.

This thesis can be seen as a contribution to the digitisation of lexicography.
Currently, digital lexicography is mainly about text encoding: a shallow,
document-oriented form of digitisation. This thesis shows the way towards a
more deeply digitised, data-centric lexicography of the future.

2

Prologue ...7

Acknowledgements...9

BLOCK I: CONTEXT ..11

1 Introduction to human-oriented lexicography13
1.1 What is a dictionary?..13

1.1.1 Dictionaries versus “language resources”13
1.1.2 Dictionaries versus “lexical databases”15

1.2 What is inside a dictionary? ..16
1.2.1 Entries and headwords..17
1.2.2 Senses ...18

1.3 Making dictionaries machine-readable..22

2 A short history of digitisation in lexicography.......................................23
2.1 From citation slips to corpus query systems24
2.2 Rise of the robot lexicographers ...25
2.3 Dictionary writing systems and what is inside them..................27
2.4 The future of human-dictionary interaction...............................28
2.5 Summary: digitisation deep and shallow31

BLOCK II: DATA LANGUAGES ..33

3 Lexicography versus XML ...35
3.1 Introduction: dictionaries and XML ...35
3.2 The dark side of XML in lexicography ..37

3.2.1 Purely structural markup and matryoshkization38
3.2.2 Matryoshkization versus your entry editor......................41
3.2.3 Matryoshkization versus schema migration42
3.2.4 Look-ahead matryoshkization ...44
3.2.5 Summary: XML in lexicography...44

3.3 Patterns of purely structural markup ..45
3.3.1 The ‘list’ pattern of purely structural markup45
3.3.2 The ‘headed’ pattern of purely structural markup..........46

3.4 The headedness of lexicographic data..47
3.4.1 Translations are headed structures...................................47

3

3.4.2 Example sentences are headed structures........................48
3.4.3 Collocations are headed structures49
3.4.4 Senses can be headed structures too.................................50
3.4.5 Entries can be headed structures too51

3.5 How to encode headedness in XML...51
3.5.1 Strategy 1: parentless sequencing52
3.5.2 Strategy 2: mixed content...52
3.5.3 Strategy 3: children as attributes.......................................54
3.5.4 Strategy 4: heads as attributes ...55
3.5.5 Conclusion: headedness in XML...55

3.6 How to encode headedness in other data languages55
3.6.1 Headedness in SGML ...56
3.6.2 Headedness in JSON...58
3.6.3 Headedness in YAML ...60
3.6.4 Headedness in NVH ...62

3.7 Conclusion ...63

4 Towards a lexicographic data language...65
4.1 The design of NVH ..65

4.1.1 A short introduction to the syntax of NVH.......................66
4.1.2 Key differences between NVH and YAML..........................67

4.2 Desiderata for a lexicographic data language..............................68
4.2.1 Avoiding purely structural markup...................................68
4.2.2 Headedness ..69
4.2.3 Explicit listing order ...69
4.2.4 Non-unique child names...70
4.2.5 Inline markup ..71
4.2.6 Easily machine-processable..72
4.2.7 Human-friendly ...72
4.2.8 Non-desiderata ..73
4.2.9 Scorecards ..74

4.3 Conclusion: notations matter ..77

BLOCK III: DATA MODELLING ...79

5 Data models in lexicography ..81
5.1 Introduction: what are we modelling for?....................................81

4

5.2 Data-modelling standards in lexicography..................................81
5.2.1 TEI Lex-0 ...81
5.2.2 LMF..84
5.2.3 Ontolex Lemon...84
5.2.4 DMLex ...86
5.2.5 Private schemas ...87

5.3 Design patterns in lexicography ...88

6 Avoiding recursion in the representation of subsenses and
subentries ..89

6.1 Introduction ..89
6.1.1 What is a dictionary schema ..89
6.1.2 Modelling dictionary entries as tree structures...............90
6.1.3 Causes and types of recursion in dictionary schemas91

6.2 Subsensing...92
6.2.1 What are subsenses for? ...93
6.2.2 What is wrong with recursive subsenses?.........................95
6.2.3 The proposal ..95
6.2.4 Realistic example: sicher in DWDS......................................98

6.3 Subentrying...99
6.3.1 What are subentries for? ..100
6.3.2 Headword overriding ..101
6.3.3 What is and what is not overriding..................................102
6.3.4 What is wrong with overriding?104
6.3.5 How dictionary schemas enable overriding104
6.3.6 The proposal ..105
6.3.7 Realistic example: sicher in DWDS....................................107

6.4 Conclusion ...108
6.4.1 A new design pattern ..108
6.4.2 Advantages and disadvantages ..109

7 On the design of DMLex...111
7.1 A map of the DMLex specification...111
7.2 The thinking behind DMLex ..113

7.2.1 Does the world need another lexicographic data
standard?...113
7.2.2 What is a data model? ...114

5

7.2.3 What kind of data model is DMLex?114
7.2.4 The metamodel behind DMLex ..115
7.2.5 Relations, relations everywhere116

7.3 How DMLex models selected phenomena117
7.3.1 The basics: entries and senses..117
7.3.2 Cross-references ..119
7.3.3 Multiple headwords per entry ...121
7.3.4 Placement of multi-word subentries124
7.3.5 Entry-internal sense relations ...126
7.3.6 Separation of form and meaning128

7.4 Conclusion: towards a data-centric lexicography of the
future ...130

Epilogue.. 133

Author’s publications ...135

References..139

6

Prologue
My long career in computational lexicography,1 all those years when I have
been providing IT support and building IT infrastructures for various
dictionary projects, has given me an opportunity to think critically about the
data structures we use for representing lexicographic content. This thesis is
the outcome of that critical thinking.

A good PhD thesis is one which identifies a problem and proposes a solution.
This happens twice in this thesis.

Preceding the two blocks, Block I ‘Context’ serves as an introduction: it
defines the kind of lexicography that this thesis is about, and sets it in the
context of broader digitisation tendencies that are in progress in the
discipline at present.

The first ocassion is in Block II ‘Data Languages’ where I identify several
problems with how XML and other languages are used for encoding
lexicographic content, and I propose a new formal language called NVH
(Name-Value Hierarchy) which fits the needs of lexicography better.

▪

The second ocassion is in Block III ‘Data Modelling’ where I identify a
number of problems with the tree-based data models that are commonly
used for representing dictionaries, and I propose an alternative data
model based on a hybrid between tree structures and graph structures.
This proposed data model is called DMLex (Data Model for Lexicography)
and is now on its way to becoming an official OASIS specification.

▪

1 Sometimes also called “e-lexicography”. This term appeared sometime in the 2010s
but seems to be falling out of use now, no doubt because all lexicography is “e-” now.

7

Prologue

8

Acknowledgements
I am grateful to friends and colleagues in the NLP Centre1 and in Lexical
Computing2 for encouraging me to develop the ideas that eventually made
it into this thesis, in particular Pavel Rychlý (my thesis supervisor), Miloš
Jakubíček (my thesis consultant), Michael Rundell, Adam Rambousek, Vojtěch
Kovář and the late Karel Pala. Lexical Computing has supported my research
financially over the years: the company has a history of sponsoring academic
research in disciplines relevant to it and I have been able to benefit from that.
Lexical Computing has also kindly taken over the development of Lexonomy,
an open-source dictionary writing system I had created in 2016, after it
became clear that Lexonomy would not be a topic in my thesis and that I did
not have the capacity to be the project’s maintainer. One of the two main
contributions of this thesis, the formal language known as NVH, is a direct
result of my work with Lexical Computing, and has now been adopted by the
company internally for all its lexicographic work.

An equal amount of gratitude goes to friends and colleagues in the wider
international lexicographic community whom I have been meeting and
exchanging ideas with at conferences such as eLex and the EURALEX
congresses, and in Europe-wide projects such as ENeL (European Network for
eLexicography) and ELEXIS (European Lexicographic Infrastructure). Most of this
thesis can be traced back to talks and papers I had presented at these forums
over the years. In particular, I am grateful to my fellow current and former
members in LEXIDMA (Lexicographic Data Models and API), a technical
committee in OASIS: Simon Krek, Marko Kokol, Iztok Kosem, Tomaž Erjavec,
John McCrae, Carole Tiberius, Jelena Kallas, Ilan Kernerman and David Filip.
Together, we have developed DMLex (Data Model for Lexicography), the second
of the two main contributions of this thesis.

1 Centre for Natural Language Processing at Masaryk University’s Faculty of
Informatics.
2 Lexical Computing is one of the campus companies hosted by the Faculty of
Informatics. It is known mainly for the Sketch Engine corpus query system.

9

Acknowledgements

10

BLOCK I: CONTEXT

11

12

1 Introduction to human-oriented
lexicography
This chapter will define the object of the thesis: the domain of human-oriented
lexicography. We will do this from two angles. First, we will set human-
oriented lexicography apart from other kinds of lexicographic activities in
natural language processing (NLP) and in language technology. Second, we
will go on a short guided tour through the types of content that are usually
found in human-oriented dictionaries: entries, senses, definitions and many
others. This will be an introduction to the kinds of objects we will be
attempting to represent computationally in the rest of this thesis.

1.1 What is a dictionary?

The typical product of lexicography is a dictionary. A dictionary can take the
form of a printed book or, more likely these days, a digital artefact presented
to users on the screens of their computers and mobile phones. This section
will clarify how human-oriented dictionaries differ from other digital
artefacts that provide information about words such as NLP-style “language
resources”, wordnets, framenets and word embeddings.

1.1.1 Dictionaries versus “language resources”

The term lexicography is used in this thesis to refer to the discipline which
produces dictionaries and other language-related reference works intended
for consumption by human users. The emphasis on human users is important
here. This thesis is not about machine-understandable language resources
such as semantic networks, frame lexicons and morphological databases. The
discipline which produces such datasets is sometimes called lexicography too
but it is a different offshoot of lexicography which this thesis will not deal
with.

Why is it important to distinguish between dictionaries for humans on the
one hand and language data for machines on the other? After all, both
disciplines have roughly the same goal: to organize information about the

13

words of one language or another, and to make that information available to
whoever needs it. Why does it matter, then, whether the consumer is a human
person or a computer application? Your initial intuition may be that once a
dictionary originally written for humans is encoded on a computer, it will
immediately become useful for applications in natural language processing
such as word-sense disambiguation and machine translation. Conversely, you
might think that a computational lexicon such as WordNet or FrameNet
should be useful for humans to look up words in. True, such crossovers are not
completely unheard of. Dictionary content originally produced for humans
is occasionally found useful for other applications: a classical example is the
grammatical coding system in Longman Dictionary of Contemporary English
(published in 1978) which found extensive use in natural language processing
in the 1980s (Boguraev and Briscoe 1987). And perhaps there are people who
do satisfy their linguistic information needs by looking words up in WordNet
and FrameNet instead of a Collins, a Merriam-Webster or a Wiktionary. But
such synergies are rare. On the whole, the two camps are separate: there are
dictionaries for humans and there are lexical resources for machines, with
little overlap.

This is not just an artefact of ignorance, of factions failing to talk to each
other. There are deeper reasons for this. Human-oriented dictionaries tend to
communicate facts about language in ways which, while not explicit enough
for computer applications, are optimized for human cognitive abilities.
Computational lexicons, on the other hand, tend to represent lexical
knowledge in ways which can be rather alien to humans, especially humans
who are not computational linguists. And this divide, if anything, is getting
wider with the arrival of machine-learned language models such as word
embeddings: these represent lexical knowledge in ways even more alien and
more inaccessible to inspection than hand-crafted WordNet-style resources.

In fact, the structure of any machine-oriented lexical resource has almost
nothing in common with the structure (both micro- and macro-) of a typical
human-oriented dictionary. For this reason, it is valid to study the data
structures of human-oriented dictionaries separately from the data
structures present in computational lexicons. The purpose of this thesis is to
study the former without getting distracted by the latter.

1 Introduction to human-oriented lexicography

14

1.1.2 Dictionaries versus “lexical databases”

Dictionaries do not simply list off all facts that can be known about a word.
Good dictionary authors are careful about what they include and exclude in a
dictionary entry, depending on the dictionary’s purpose and target audience:
whether it is a dictionary for decoding or encoding, a dictionary for native
speakers or for learners, if learners then which level, and so on. The principle
of selection of information is important in dictionary production, it is how
lexicographers respond to the intended lexicographic function of the dictionary
(in the sense defined by Tarp 2008) and to the perceived information needs (in
the information-scientific sense of the term) of its end-users.

In contrast to this stands the concept of lexical (or lexicographic, or
lexicographical) database: a “structured resource that contains as much
lexicographic information as possible regarding words and lexical units in
a language” (Horák and Rambousek 2018, p. 185). These databases are not
dictionaries. They are something from which a dictionary may be derived
later, either automatically by setting a few parameters, or manually by human
lexicographers. Examples of such databases include Cornetto (Dutch: Vossen
et al. 2012), DANTE1 (English: Convery et al. 2010, Rundell and Atkins 2011)
and EKILex (Estonian: Tavast et al. 2018). Wikidata Lexemes can also be
understood as such a database, this one being multilingual. Unlike a
dictionary, a lexical database is there to meet the information needs of the
lexicographers, not the dictionary end-users. A lexical database is neutral in
terms of its lexicographic function: it can fulfill multiple functions depending
on what the lexicographer decides to include or exclude.2

Are the structures of lexical databases within the scope of this thesis? That
depends. Some lexical databases, such as Cornetto, are organized in
structures reminiscent of machine-oriented WordNet-like resources where
the main organizing principle is a network of lexical units. These databases
are relatively far away (structurally speaking) from the eventual dictionary

1
https://www.dantedictionary.com/

2 The role of a function-agnostic database in the dictionary production process is
detailed in section 4.2.2 of Atkins and Rundell (2008). For a critical discussion of the
concept see Bergenholtz and Nielsen (2013).

1 Introduction to human-oriented lexicography

15

https://www.dantedictionary.com/

that may be derived from them. For that reason, they are out of scope here.
Then there are lexical databases such as DANTE whose data structure is very
similar to that of a finished dictionary: the primary organizing principle is a
collection of entries subdivided into senses, with very little explicit networking
between them. A good way to think about a lexical database like DANTE is
that it is a semi-finished human-oriented dictionary, an “almost-dictionary”
which needs some amount of editing (but no structural transformation)
before it is ready to start fulfilling some lexicographic function and meeting
the information needs of end-users. The structures of such databases are very
much within the scope of this thesis.

1.2 What is inside a dictionary?

Now that we have defined which kinds of dictionaries are in scope for this
thesis, let us take a look inside them: let us look at the kinds of content
typically found in dictionaries. This section will be useful to readers who do
not have a background in lexicography, as an introduction to the domain we
will be modelling in the remainder of this thesis.

Figure 1-1 A typical dictionary entry

1 Introduction to human-oriented lexicography

16

1.2.1 Entries and headwords

A dictionary is a collection of entries. Dictionary entries are not continuous
text (like paragraphs in a novel or encyclopedia). The style of the language
inside them tends to be “telegraphic”, the only items that consist of full-
formed sentences are usually the examples (and sometimes the definitions,
for that see below). They are highly structured, they resemble multi-level
bulleted lists rather than continuous text, and they are rarely read from
beginning to end in their entirety: a typical user, once they have located the
entry which they believe will satisfy their information need, will briefly scan
the entry before eventually zooming in on the part that interests them.

In printed dictionaries the entries have traditionally been arranged
alphabetically by the entries’ headwords, in electronic dictionaries the
entries are stored in some form of database and brought on the user’s screen
in response to what the user has searched for. The principle by which entries
are organized in a dictionary is called the dictionary’s macrostructure, while
the internal structure of the entries themselves is the dictionary’s
microstructure.

Each entry typically begins with a headword. The rest of the entry describes
the headword, typically by giving a numbered list of the headword’s senses.
The way a dictionary approaches the lexicon of a language can therefore be
described as semasiological: it starts from a word and asks, which meanings
does this word have? (The opposite would be an onomasiological approach:
starting from a defined meaning or concept and asking, which words express
this meaning? This is the approach taken in terminology studies and also in
various wordnets and framenets).

Most of the time, the lexicographic concept of a headword is identical to what
a lexicologist or a computational linguist might call a lemma: a canonical
word form, such as the nominative singular of a noun or the infinitive of
a verb, which represents a possibly very large set of inflected word forms
(all the cases of a noun, all the tenses of a verb). But not all headwords
are lemmas. Sometimes lexicographers decide to give headword status to
individual word forms if they believe that this will be useful for the user.
An example would be Czech vlas ‘a hair’ whose plural vlasy has meanings

1 Introduction to human-oriented lexicography

17

that are partially unpredictable: not just ‘hairs’ but also ‘headhair’. In such a
situation the lexicographer may well decide that vlasy needs its own entry. In
addition to that, sub-word units such as suffixes and prefixes are often treated
as headwords too, and in recent years we see a tendency to treat multi-word
items, such as various idioms and set phrases, as headwords as well.1

The headword is often followed by one or more of the following items:

1.2.2 Senses

The largest part of a dictionary entry is usually taken up by an ordered list
of senses. Each sense represents one of the possibly many meanings of the
headword. The senses are typically presented as a bulleted or numbered list.
In printed dictionaries the senses were often all presented inline, without
line breaks between them, to save space. Modern on-screen dictionaries are

Grammatical labels which indicate its part of speech (= whether it is a
noun, a verb, an adjective etc.) and other grammatical properties such as
noun gender or verbal aspect.

▪

Various inflected forms of the headword: the plural of nouns, the past
tense of verbs and so on. In richly inflected languages dictionaries do not
usually list all possible inflected forms of the headword because such lists
would be too long and distracting (for example, for a Czech noun that
would be up to 14 word forms: seven grammatical cases in the singular
and seven again in the plural). Lexicographers normally choose a handful
of representative forms to indicate to the user how the word inflects in
broad terms.

▪

An indication of the headword’s pronunciation. In printed dictionaries
this is often given as a transcription in (some variant of) the
International Phonetic Alphabet (IPA) or in some kind of simplified
“phonetic spelling”. In digital dictionaries pronunciation is increasingly
being offered as sound recordings which the user can listen to.

▪

1 At that point headword becomes a bit of a misnomer: the term implies a single-word
expression whereas modern dictionaries may contain entries headed by multi-word
“headwords”.

1 Introduction to human-oriented lexicography

18

usually more generous in their use of whitespace and the senses are
formatted as visually separated block-level elements with generous
whitespace between them.

The senses of a lexicographer are not necessarily the same thing as the senses
of a lexicologist1 or a cognitive linguist. In disciplines where researchers
are interested in how a person’s mental lexicon is organised, it is seen as
important to distinguish between situations when two “readings” of a word
constitute separate senses and when not. For example, the two readings of
bank (a financial bank versus the bank of a river) would be considered
separate senses (because you can never mean both at the same time, not
even in an ambiguous sentence like we finally reached the bank) but the two
readings of the financial sense (an institution versus a building) would not be
considered separate senses (because you can mean both at the same time, as
in I work in a bank) – these two readings would more likely be described by a
lexicologist as facets, microsenses or ways-of-seeing of the same sense. But most
of this is only of limited relevance to a lexicographer’s job. A lexicographer
may well decide to present facets to the dictionary user as separate senses (or
subsenses), or to merge two senses into one, if he or she believes that this will
be useful to the end-user (= that it will satisfy the user’s information needs).
This illustrates an important point about human-oriented lexicography in
contrast to lexicology: a lexicographer’s mission is not necessarily to express
facts which are true with respect to some linguistic theory but to present
those facts in ways which are going to be useful, helpful, relevant and easy
to understand for a human dictionary user. So: the term sense does not have
much of any deep theoretical meaning in lexicography, it is just a unit of
organising information: basically nothing more than a synonym for “an item
on a list”:2 just as a headword is not the same thing as a lemma.

1 I understand the difference between a lexicographer and a lexicologist as follows. A
lexicologist is someone who studies the words that exist in a given language. A
lexicographer is someone who finds ways to communicate those findings to ordinary
people.
2 In lexicology, the superordinate term for both sense and facet is reading. In German
lexicographic literature the term for sense is sometimes the word Leseart ‘a way of
reading’. This is – from a lexicologist’s point o view – perhaps a more adequate term
for the lexicographic “item on a list”.

1 Introduction to human-oriented lexicography

19

The order in which the senses are presented usually matters: lexicographers
often deliberately arrange senses according to some principle such as
frequency of use (most common senses first), chronology (historically oldest
– or newest – senses first), a perceived “basicness” (literal senses first,
metaphorical extensions after), age of acquisition (in children’s dictionaries)
or learner level (e.g. according to CEFR1).

High-frequency headwords typically have a lot of senses while low-frequency
headwords often only have one. In traditional printed dictionaries, when an
entry contains only a single sense, if often happens that the sense is not
marked up in any obvious way from the rest of the entry. In modern born-
digital dictionaries, the senses of an entry are always marked up explicitly
(typically using some XML element such as <sense>), even if there is only one
of them.

A sense typically consists of items such as the following:

A definition: a sentence which explains the meaning of that sense.
Definitions are usually in the same language as the headword. Different
dictionaries have different defining styles. Some definitions are formal
and written strictly in such a style that one could almost replace the
headword with them (“collide: to hit something violently”2) while others
use a more chatty, full-sentence style which re-uses the headword (“if
two or more moving people or objects collide, they crash into one
another”3). The latter is popular in pedagogical dictionaries for second-
language learners and some authors prefer calling such definitions
explanations rather than definitions. In addition to (or instead of)
definitions/explanations, senses sometimes start with short “mini-
definitions” (called variously indicators, disambiguators, signposts or
glosses) whose purpose is to help the user locate the desired sense
quickly when scanning a long entry visually. In modern born-digital

▪

1 Common European Framework of Reference, a popular system for ranking the skills of
second-language learners in levels ranging from A1 (absolute beginner) to C2 (native-
like fluency).
2 From Cambridge Advanced Learner’s Dictionary & Thesaurus
3 From Collins COBUILD Advanced Learner’s Dictionary

1 Introduction to human-oriented lexicography

20

dictionaries definitions are sometimes supplemented or even replaced
by graphics.

Translations of the headword if the dictionary is bilingual. Some
translations are simple and straightforward equivalents of the
headword, but in complicated cases, when the target language does not
have a straightforward equivalent, these can be explanatory translations
which read almost like definitions, but in the target language.
Translations can be just strings of text, or they can be annotated with
additional information such as grammatical labels, transcriptions of
pronunciation and so on, depending on the purpose of the dictionary.

▪

Example sentences which show how the headword is used in context.
Lexicographers include example sentences in a dictionary for many
different purposes. In a pedagogical dictionary for second-language
learners, the purpose of examples is to show models of good usage which
the learner would do well to follow. In dictionaries for native speakers
the purpose of examples may be less to serve as a model of good usage
and more to clarify the sense, together with the definition. And in
historical dictionaries the examples may be there primarily to attest, to
prove that the sense exists or existed. Example sentences may or may not
come with source attributions, may or may not have sound recordings of
pronunciation, and may or may not be translated.

▪

Collocates of the headword, that is, words that often accompany the
headword in real-world language use: adjectives that often modify the
head noun, verbs that often have this noun as subject or object, and
so on. Traditionally, it has not been very common for dictionaries to
have collocates (unless it was a specialized collocations dictionary) but
it has been becoming more common in recent decades, mainly because
collocates are relatively easy to extract from corpuses1 and because they
are often the basis on which senses are identified.

▪

Cross-reference to other (senses of other) entries in the same
dictionary, such as links to synonyms and antonyms.

▪

1 Readers will hopefully not be disturbed by my preference for the modern regular
plural of corpus: I write corpuses, not corpora, everywhere here.

1 Introduction to human-oriented lexicography

21

The purpose of all this sense-level content is to describe meaning: the
semantics and the pragmatics of the headword. In contrast, the purpose of
entry-level content such as part-of-speech labels and pronunciation
transcriptions is to describe the formal properties of the headword: its
morphology, morphosyntax, phonology and orthography. An ideal which
lexicographers sometimes aspire to is to have a clear division between formal
and semantic properties of the headword: the formal properties belong at
the entry-level and are understood to be shared by all the senses, while
the semantic properties belong at the sense-level and are specific to each
individual sense. In practice, this ideal is sometimes relaxed, and senses
sometimes contain formal information too. For example, if a noun has two
different plural forms and these are associated with two separate senses, then
the plurals may be given at the level of the senses, rather than at the level
of the entry. Later in this thesis, in Chapter 7 when we go on to describe the
DMLex data model, we will see that it is possible to handle such situations
without giving up on the ideal of strict separation between formal and
semantic properties.

Senses are often arranged in a flat list without hierarchy, but in some more
complex dictionaries there may be a hierarchical list of senses and subsenses.
The entry structure in such dictionaries can be understood as recursive:
senses can contain other senses. In Chapter 6 we will discuss recursion in
more detail.

1.3 Making dictionaries machine-readable

Dictionaries are a very specific text type. Representing them on computers –
which is something people have been doing since the 1980s if not earlier – is a
different task from text encoding in the likes of HTML, LaTeX or DocBook. In
a text encoding scenario, the typical goal is to mark up things like paragraphs
and itemized lists, as well as inline structures such as stretches of “strong”
and “emphasised” text (≈ bold and italic). Digital lexicography aims at a
higher level of abstraction, the goal is to represent the domain-specific
content types discussed above, such as senses and definitions, as well
relationships between them. Blocks II and III of this thesis deal with the
various challenges that come up when attempting to do that.

1 Introduction to human-oriented lexicography

22

2 A short history of digitisation in
lexicography
The preceding chapter has introduced human-oriented lexicography as the
domain of interest for this thesis. Data modelling is a digitisation activity: it is
one of the things we do to migrate a domain into the digital medium. In this
chapter, we will review to what extent lexicography has become digitised in
the last few decades. This should set the rest of this thesis in its broad context.

For most of their history, dictionaries have existed as printed books. Today,
however, the popular image of “the dictionary” as a book is outdated and
hugely out of sync with how lexicography is actually done. Today’s
lexicography is a discipline where everything happens on computers, either
fully automatically or in interaction with humans: this applies to how
dictionaries are made (using corpus query software and dictionary writing
systems) as well as to how dictionaries are delivered to end-users (as websites
and mobile apps). The printed dictionary market has shrunk to a shadow of
its former self while online dictionaries rule the day. Most dictionary projects
today are designed as digital-only, with no printed output planned. Like many
other disciplines, lexicography is going through a digital transformation. The
purpose of this chapter is to clarify how far advanced we are in this
transformation and how much of it is still ahead of us.

The process of making and delivering a dictionary is something which unfolds
in stages. The first stage is when we are discovering facts about words, these
days typically from a corpus. The second stage is when we are organising
these facts into the form of dictionary entries. The final stage is when we are
delivering dictionaries to human users on their screens or (rarely) on printed
pages. In this chapter I will argue that not all stages have been digitised
equally. Although the first stage – discovery – has been digitised thoroughly
and in some sense “completely”, the remaining two stages – organisation and
delivery – have only been digitised rather superficially so far and there is
untapped potential in them yet.

23

2.1 From citation slips to corpus query systems

To say something about a word, the lexicographer must know something
about it first. Pre-digital lexicographers relied on their introspection and
their own subjective judgment to produce lists of the meanings a word has,
to compose example sentences, and so on. From the 19th century onwards
this started becoming more objective and empirical with the introduction
of citation slips and various reading programmes (Atkins and Rundell 2008,
section 3.2). And, from late 20th century onwards, these analog tools have
started being replaced by methods from corpus linguistics and from natural
language processing.

The use of corpuses and computational methods for lexicography was
pioneered in the 1980s by the now legendary COBUILD project (Sinclair 1987).
Today, putting NLP at the service of lexicography – for the purposes of
knowledge acquisition – is a well-established research programme (Horák and
Rambousek 2018, section 12.3.1). Computational methods have given
lexicographers previously unheard-of superpowers such as automatic
discovery of collocations based on various statistical measures, automatic
word-sense discovery through clustering of collocates, automatic discovery of
synonyms, antonyms and other semantic or paradigmatic relations, and even
finding “good” dictionary examples based on heuristics such as “prefer short
sentences with simple words in them”. Corpus-based lexicography is now the
standard, practically all dictionary projects begin by deciding which corpus to
work from. The process of compiling a dictionary entry almost always begins
with using a corpus query system such as Sketch Engine (Kilgarriff et al. 2004,
Kilgarriff et al. 2014) to discover facts about the headword.

The corpus turn in lexicography has introduced three major categories of
innovations. Firstly, they enabled the existence of superhumanly large
corpuses which would have been unachievable using analog tools: in other
disciplines such large datasets are called Big Data. Secondly, they brought
statistical methods that can be used to analyze these corpuses more
objectively than a human lexicographer could, and at the same time bring
to light knowledge that a human person might not even notice. Thirdly,
new models of human-computer interaction have emerged, concepts such as

2 A short history of digitisation in lexicography

24

keyword in context and word sketch, which allow the human lexicographer to
take note of the outputs of the corpus methods and understand them.

We can therefore say that the initial stage of the entire lexicographic process
– knowledge acquisition – has already been digitised so thoroughly and so
deeply that we have actually redefined it into something quite different from
what it was in pre-digital times. Today’s corpus tools are not just better
versions of paper-based citation slips and reading programmes: they are
qualitatively different, delivering results that would have been unachievable
without them. The NLP methods used for extracting knowledge from corpuses
will certainly continue to improve incrementally, but it seems that no major
new innovations are likely to emerge in this area: the potential offered by the
digital medium has been exploited more or less fully here.

As a parallel trend, we sometimes see efforts to complement corpus data with
insights from research on how people use online dictionaries (Lew and de
Schryver 2014), especially search log analysis (De Schryver et al. 2006), and
with insights from studies in psycholinguistics and language acquisition such
as word prevalence and age of acquisition (Lew and Wolfer 2024a), or learner
level (Lew and Wolfer 2024b). These play a role mainly in deciding which
headwords to include in a dictionary and in prioritizing which headwords the
lexicographers should process first. For everything else, “corpus is king” and
will probably remain on its throne for the foreseeable future.

2.2 Rise of the robot lexicographers

The lexicographer’ job is to “translate” knowledge from the corpus into the
form of a dictionary entry that is going to be comprehensible and useful
to the intended end-users. Until recently, the everyday reality for working
lexicographers has been to do the “translating” manually: on one screen, the
lexicographer watches the results of the corpus analysis (using a corpus query
system such as Sketch Engine) and, on another screen, he or she compiles
the dictionary entry by typing, copying and pasting short pieces of text into
a prepared structure in a dictionary writing system such as Lexonomy. All
knowledge from the corpus passes through the mind and fingers of the person
in front of the keyboard before it becomes a dictionary. Human minds and

2 A short history of digitisation in lexicography

25

fingers are the bottlenecks of the lexicographic process – they are what makes
dictionary projects take so long and cost so much money – so it is no wonder
that there is a push towards automation here.

Automation in this area began modestly over a decade ago in the form of
ergonomic improvements such as tickbox lexicography (Kilgarriff et al. 2010)
in Sketch Engine (which makes it possible to batch-copy content from the
corpus tool into the dictionary) and content pulling (Jakubíček et al. 2018) in
Lexonomy (which allows the lexicographer to “pull” content from the corpus
into the dictionary entry on request).

More recently, we have been seeing more radical attempts at automation,
when people are experimenting with the automatic generation of entire
dictionary entries and entire dictionaries, either “at once” (the One-Click
Dictionary method, Jakubíček et al. 2018, in Sketch Engine which makes it
possible to generate an entire proto-dictionary from the corpus), or
“gradually” when dictionaries are generated step by step in interaction with
a human editor (the Million-Click Dictionary method, Jakubíček et al. 2021).
Experience so far shows that it is possible to make the lexicographic process
go faster and cheaper this way (Baisa et al. 2019), importantly without having
to accept inconvenient trade-offs affecting the quality of the resulting
dictionary.

However, nothing is without consequences. Here, like everywhere else,
increased automation forces a certain redefinition of what we are actually
doing. Firstly, the role of the lexicographer is shifting from the role of a
“driver” of the entire process to the role of a post-editor, someone who only
corrects the computer’s mistakes and intervenes where the computer does
not know how to proceed. This transformation, which is only just beginning
in lexicography, is already far advanced in other language-related disciplines,
for example in translation (the role of the translator is changing to the role of
a machine translation post-editor) and in copywriting (the role of people who
produce marketing texts, such as product descriptions in online shopping,
is changing to the role of authors of templates from which machines then
generate finished texts). Secondly, there is a tendency to simplify the
structure of dictionary entries. Dictionary entries generated by automatic
methods tend to have a flatter structure (without a complex hierarchy of

2 A short history of digitisation in lexicography

26

senses and subsenses) and contain a narrower repertoire of content types
than dictionaries compiled by humans. In other words, automatically
generated dictionaries are shaped by what can be obtained from the corpus
rather than what lexicographers ideally want to have in a dictionary. Whether
this bothers the end-users and whether they even notice is an open question.

All these trends are relatively new and are far from established practice yet.
Some dictionary makers are experimenting with these while others are not
even aware of them yet. An additional, recently emerged trend which is even
further from everyday practice yet, is using generative AI to automate certain
lexicographic tasks (De Schryver 2023), especially those that have previously
resisted automation, such as definition writing. Lexicographic definitions are
notoriously difficult to extract from corpuses (Kovář et al. 2016, Stará 2019)
because authentic non-dictionary texts do not normally contain sentences
of that type (“a window is a space usually filled with glass in the wall of
a building”). It seems that, with clever prompting and clever use of few-
shot learning techniques, large language models such as ChatGPT are able
to generate dictionary-style definitions to a standard comparable with those
written by human lexicographers (Lew 2023).

The summary is that this particular stage of the lexicographic process – the
stage when lexicological knowledge is being converted into lexicographic
content – is currently undergoing rapid innovation and is being subject to a
strong push towards automation. This will probably force a redefinition and
renegotiation of the roles of humans and machines in the entire process.

2.3 Dictionary writing systems and what is inside
them

The classical data structure for lexicographic content is an entry. Section 1.2
has given an introduction to the types of content that dictionary entries
usually contain. Lexicographers typically use specialised software, a dictionary
writing system, for editing a dictionary. Current widely used dictionary writing

2 A short history of digitisation in lexicography

27

systems are the IDM Dictionary Production System,1 TLex,2 iLex (Erlandsen
2010) and Lexonomy3 (Měchura 2017, Rambousek et al. 2021). For a
comprehensive recent review of dictionary writing systems see Abel 2022.

Using specialised dictionary software is commonplace on dictionary projects
today. At first glance, it might seem that this is another example of deep
and thorough digitisation: nobody seriously considers writing a dictionary in
an ordinary word processor any more. But, in the rest of this thesis, I will
argue that we have not yet exhausted all the potential that the digital medium
offers. Practically all current dictionary writing systems represent dictionary
entries as isolated tree structures, usually encoded in XML – the software
is not much more than a glorified XML editor. Block III of this thesis is a
critique of this position: I argue there that keeping dictionaries in a purely
tree-structured data model imposes certain inconvenient limits and causes
problems which could be solved by re-engineering dictionaries into a more
flexible, partially graph-based data model.

Concrete proposals for how to do this are laid out in Block III, therefore we
will not go deeper into the topic at this stage. Let it just be said at this point
that, from a data-modelling perspective, lexicography has only undergone a
rather shallow form of digitisation so far, and that there is much to be done
yet.

2.4 The future of human-dictionary interaction

When dictionaries migrated from the pages of books onto computer and
phone screens in the last two decades, it was a big change for the better
for the end user. The main improvement is that it made searching faster
and easier. In paper dictionaries, the user had no choice but to be his or
her own search engine: people searched by turning the pages with their
fingers, navigating alphabetically. This is a process which takes time and puts
a cognitive load on the person: your attention is distracted from whatever

1
https://dps.cw.idm.fr/index.html?the_entry_editor.htm

2
https://tshwanedje.com/tshwanelex/

3
https://www.lexonomy.eu/

2 A short history of digitisation in lexicography

28

https://dps.cw.idm.fr/index.html?the_entry_editor.htm
https://tshwanedje.com/tshwanelex/
https://www.lexonomy.eu/

you were doing before, such as reading or writing, by having to search the
dictionary. Computers have allowed us to take this cognitive burden off
ourselves and outsource it onto a machine. This has made it much easier for
people to use dictionaries.1

Some people are still deeply fascinated by this innovation. But for most
computer users today, many of whom are digital natives, this evolutionary
step is something that happened a long time ago. Digital dictionaries are
the normal state of affairs. It is now time to start asking what the next
evolutionary step in human-dictionary interaction will be.

One emerging user requirement is aggregation: people increasingly express
a desire to search many dictionaries at once. The current situation is that,
in each language and in each language pair, users usually have a choice of
multiple online dictionaries and dictionary-like products which may or may
not satisfy their current information need: the user has to visit each website
individually to see if it has the information the user is looking for. This can
be an arduous slog around the Internet: every dictionary website is a little
different, some are user-friendly and ergonomic, others not so much, you
have to know them, know their addresses, know the strengths and weaknesses
of their search algorithms. It is a large cognitive load. Can it be automated?

One strategy is to use a generic search engine like Google – but generic search
engines often misconstrue a lexicographic query for an encyclopedic one:
“tell me about the word cat” versus “tell me about cats”. Another option is
to use one of the few existing dictionary-specific meta-search engines and
aggregators such as OneLook2 and the European Dictionary Portal3 (Měchura
2017) – but their problem often is that they do not cover the languages,
language pairs or individual dictionaries the user wants.

1 Anecdotal evidence suggests – even if there is no data to prove it – that people
consult dictionaries more often today, in the digital era, than they used to back when
all dictionaries were on paper. This must be because dictionaries are easier to use
now: human nature dictates that the easier something is, the more are people likely
to do it.
2
https://onelook.com/

3
http://www.dictionaryportal.eu/en/

2 A short history of digitisation in lexicography

29

https://onelook.com/
http://www.dictionaryportal.eu/en/

The road to a better aggregation of dictionary websites is currently blocked by
several obstacles. One obstacle is the absence of widely respected standards
for exposing dictionary metadata on the Internet: a machine-readable
vocabulary which any dictionary website could use to tell the world about
the headwords it contains, in which languages they are, and so on. This is a
technical hurdle. The second obstacle is more human: publishers tend to be
reluctant to make their content available to third parties. Most organisations
that publish online dictionaries today prefer to do so on their own websites,
under their own logos, with their own identities. This is understandable for
commercial publishers, but non-commercial and academic institution have
this tendency too. In spite of these handicaps, some form of aggregation on
tomorrow’s “Internet of dictionaries” is probably unavoidable. For once, it is
what users want and, secondly, it is already happening in other information
disciplines, mainly in libraries and in scientific publications: open metadata,
all kinds of portals and metasearch engines are already commonplace there
today.

A second emerging trend is for dictionaries to become integrated into other
tools, even to such an extent that the dictionary becomes invisible (Medveď
et al. 2023). The motivation is again to minimise the cognitive load associated
with consulting a dictionary. A dictionary is something people use when they
are doing something else (Nesi 2015), typically reading or writing. While
reading or writing, an information need may emerge in the reader’s or
writer’s mind, a need which must be satisfied before the user can or wants
to continue: perhaps because he or she does not understand a phrase or is
not sure how best to express an idea. This is when people decide to go to
a dictionary, but this comes at the cost of becoming distracted and perhaps
losing track of what you were doing before.

This is why we are beginning to see experiments with digital tools which
eliminate the need to “go” anywhere at all: the user can satisfy his or her
information needs right there in the current context, without having to – for
example – switch to a different browser tab or window. An example is the
experimental tool ColloCaid (Lew et al. 2018) which, while writing in a second
language, suggests typical collocations on the spot, without the need to go
anywhere or search for anything. Writing tools are not a new genre by any
means (spellcheckers and grammar checkers have existed for decades), what

2 A short history of digitisation in lexicography

30

is new is the fusion between them and subsets of what would traditionally
be called “lexicography“ (in ColloCaid’s case, the cataloguing of collocations).
While writing tools are a well-known genre, “reading tools” are not and that is
perhaps why nobody has built a hypothetical “clicktionary” yet, a tool which
would let the user click on any word anywhere and which would not only
bring up the correct dictionary entry but would also highlight the correct
sense inside the entry.

Both these trends – the trend towards aggregation and the trend towards
invisibility – are in extremely early stages yet. The current state of the art
is more mundane and prosaic: we have dictionary websites and dictionary
apps which, while offering a slightly better user experience over printed
dictionaries, are not really bringing anything qualitatively new, anything the
printed dictionaries were not doing already. Interaction between humans and
dictionaries is therefore an area in a relatively shallow state of digitisation, an
area where radical innovation is waiting to happen yet.

2.5 Summary: digitisation deep and shallow

This chapter has analysed the process of making and delivering a dictionary
as something that unfolds in stages, and we have shown how the different
stages have become digitised to different depths. The initial stage of the
process – knowledge acquisition – is now so deeply digitised that hardly any
qualitatively new developments are expected any more, while all the other
stages – from what happens in dictionary writing systems to what eventually
lands on an end-user’s screen – are still in a shallow state of digitisation and
there is potential for qualitative jumps to completely new levels.

This is normal for any industry which is undergoing a digital transformation.
In an influential book on digital transformations in business, Ross et al. (2021)
distinguish between two stages of digitisation: early digitisation is when
existing business models and processes are merely improved by becoming
digital, while the later stage, when the business truly becomes a “digital
business”, is when the digital infrastructure enables the discovery of
completely new, digital-only models and offerings which never existed

2 A short history of digitisation in lexicography

31

before. This corresponds to the distinction between shallow and deep
digitisation in this chapter.

The fact that shallow comes before deep appears to be a feature of
technological progress generally. Pemberton (2023) makes a similar
observation on innovations that happened long ago: “Whenever a new
technology is introduced, it imitates the old. Early cars looked like horseless
carriages because that is exactly what they were. [...] It took a long time for
cars to evolve into what we now know.” And: “For the first 50 years, [printed]
books looked just like manuscripts: hand-writing fonts, no page numbers, no
table of contents, or index. Why? That was what was expected of a book at the
time. [...] After about 50 years, readable fonts were introduced.”

When an old technology imitates the old and only improves it a little, that
is a shallow form of innovation. In lexicography, one of the areas affected by
shallow innovation is the data structures used for representing lexicographic
content. The rest of this thesis is going to be about making proposals for deep
innovation in this area.

2 A short history of digitisation in lexicography

32

BLOCK II: DATA LANGUAGES

33

34

3 Lexicography versus XML
This chapter takes a critical look at how XML is used in lexicography and
asks the question, why do dictionary entries often end up looking so complex
when encoded in XML? The main reason for the perceived complexity of XML-
encoded dictionaries is purely structural markup: XML elements which contain
other XML elements instead of human-readable text. The over-abundance
of purely structural markup in lexicography is caused by the nature of
lexicographic content, much of which is inherently headed – the concept of
headedness will be explained later in this chapter. XML has no support for
headedness and neither do other commonly used languages such as JSON and
YAML. In this chapter we propose a number of constraints and extensions to
XML, JSON and YAML which add support for headedness into these languages,
and we introduce a new language called Name-Value Hierarchy (NVH) which
was designed specifically for headed content.

3.1 Introduction: dictionaries and XML

In modern lexicography, dictionary entries are usually encoded in XML (W3C
2008). Each dictionary entry is typically its own XML document, and each
such XML document conforms to an XML schema created for that particular
dictionary. An example can be seen in Listing 3-1 which shows how a
dictionary entry from a bilingual dictionary would typically be encoded in
XML. For comparison, Figure 3-1 shows how the same entry would eventually
be presented to a human user.

35

Listing 3-1 A dictionary entry encoded in XML1

<entry>
<headword>absolutely</headword>
<pos>adv</pos>
<sense>

<gloss>completely</gloss>
<translation>go hiomlán</translation>
<translation>go huile agus go hiomlán</translation>
<exampleContainer>

<example>I absolutely agree</example>
<translation>aontaím go huile agus go hiomlán</translation>

</exampleContainer>
</sense>
<sense>

<gloss>very</gloss>
<translation>amach is amach</translation>
<translation>ar fad</translation>
<exampleContainer>

<example>he's absolutely brilliant</example>
<translation>tá sé ar fheabhas amach is amach</translation>

</exampleContainer>
</sense>

</entry>

Figure 3-1 A human-readable rendering of a dictionary entry encoded in XML

Notice that the XML encoding is relatively high-level: it encodes the structure
of the entry, not its appearance on screen or on paper. There are XML
elements to indicate where the headword is, where one sense ends and
another begins, and so on. So, we can define dictionary encoding as the
activity of taking an inventory of lexicographically relevant content items
such as headwords, part-of-speech labels, senses and translations, and
expressing them formally in a language such as XML.

XML is the most commonly used encoding language for dictionaries today.
As lexicography began digitising itself in the late 1990s and early 2000s, XML

1 Adapted from https://www.focloir.ie/en/dictionary/ei/absolutely

3 Lexicography versus XML

36

https://www.focloir.ie/en/dictionary/ei/absolutely

seemed like an obvious choice: for example, an early seminal paper on
dictionary encoding (Ide et al. 2000) extols the virtues of XML and does not
even consider any alternatives. To be sure, no workable alternatives to XML
existed in the early years of digital lexicography. XML was already popular
for text encoding in general, and its underlying tree-like object model fitted
in nicely with pre-existing thinking in theoretical lexicography where
dictionary entries were modelled as tree structures (Wiegand 1989).

It is the 2020s now and lexicography has long transitioned from paper to
screens. The focus has moved from retro-digitising old paper-bound
dictionaries to producing new born-digital ones. There have been advances in
automation, so that we no longer talk of writing dictionaries but generating
them from data and then post-editing them (Jakubíček et al. 2018). There
have been quantitative advances in both scale (how many dictionaries are
produced, how large they are) and speed (how quickly). XML is still with us in
this new world.

This chapter asks whether XML is still fit for the job. Some of the recent
advances in digital lexicography have given rise to scenarios and use cases
which were not there in the early years, such as the need to change dictionary
schemas frequently during the lifetime of a project, or to make dictionaries
more easily processable by machines (as opposed to merely legible to
humans). The purpose of this chapter is to show that XML makes some of
these tasks unnecessarily difficult, and to look for alternatives.

3.2 The dark side of XML in lexicography

XML has many properties which make it a good language for encoding
dictionary entries, for example the fact that XML preserves the order of
elements, or that XML has out-of-the-box support for inline markup. Later
in this thesis (in Chapter 4) we will give a detailed analysis of those features
of XML which are good for dictionaries. At this point, however, we are going
to concentrate on occasions when the use of XML in lexicography is more
hindrance than help.

3 Lexicography versus XML

37

Since its emergence in the late 1990s1 and despite its popularity, XML has
been subject to passionate criticism from many quarters (Carlson 2007). The
usual objection is that XML is a “verbose” language, which is another way of
saying that XML documents tend to have an inconveniently high ratio of tags
to content: it takes a lot of tags to encode a little content.

Some of the perceived verbosity of XML is caused by superficial design
decisions in the syntax of XML, in particular the fact that the name of each
element needs to be given twice, first in the opening tag and then again in
the closing tag, which is obviously redundant. This is, however, not the only
reason why XML looks and feels verbose. There are other, less superficial
reasons for the perceived verbosity of XML, reasons which have less to do with
the syntax and more with the underlying metamodel. Nowhere is this more
apparent than in lexicography, as we will show in the rest of this section.

3.2.1 Purely structural markup and matryoshkization

We will concentrate here on one less obvious cause of verbosity in XML: the
multi-layered embedding of elements inside other elements inside yet more
elements, a phenomenon we call matryoshkization.2 Listing 3-2, which shows
how a pair of translations would typically be encoded somewhere inside a
bilingual dictionary, demonstrates matryoshkization in practice.

Listing 3-2 A pair of translations encoded in XML
<translationGroup>
<translationContainer>
<translation>leasú</translation>
<pos>n-masc</pos>

</translationContainer>
<translationContainer>

<translation>athchóiriú</translation>
<pos>n-masc</pos>

</translationContainer>
</translationGroup>

1 The W3C XML recommendation, the de-facto standard for XML, was published in
1998.
2 A matryoshka is a popular Russian wooden toy in the form of a doll. When the doll is
opened it reveals a smaller doll inside, which in turn has another smaller doll inside,
and so on.

3 Lexicography versus XML

38

The only XML elements here that contain actual human-readable content
are translation (the translation’s wording) and pos (its part of speech). The
remaining XML elements are purely structural, used for grouping other
elements together:

Let us walk ourselves through the hypothetical steps which may have led a
schema designer to designing the schema in this way.

Step 1. In the beginning, the requirement was to encode translations. This
can be done very easily with just one type of element which we can call
translation : Listing 3-3.

Listing 3-3 Two translations
<translation>leasú</translation>
<translation>athchóiriú</translation>

Step 2. Then the schema designer realised that we need to encode part-of-
speech labels for each translation, using an element we can call pos : Listing
3-4.

Listing 3-4 Two translations and two POS labels
<translation>leasú</translation>
<pos>n-masc</pos>
<translation>athchóiriú</translation>
<pos>n-masc</pos>

Step 3. But, to indicate which part-of-speech element belongs to which
translation, the schema designer decides to group each pair under a common
parent. A popular naming convention in lexicography is to call such elements
containers, for example translationContainer : see Listing 3-5. This has
introduced one level of matryoshkization into the entry schema: one layer of
purely structural markup.

The translationContainer element groups translation and pos elements
together.

▪

The translationGroup element groups several translationContainer

elements together.
▪

3 Lexicography versus XML

39

Listing 3-5 One layer of purely structural markup
<translationContainer>

<translation>leasú</translation>
<pos>n-masc</pos>

</translationContainer>
<translationContainer>

<translation>athchóiriú</translation>
<pos>n-masc</pos>

</translationContainer>

Step 4. At this point, the schema designer notices that the code in which
translations are encoded is quite long. It occurs to him or her that it might
be a good idea to wrap all translation containers inside yet another layer of
purely structural markup, so that it becomes easier to collapse and expand in
an XML editor. In lexicography, when an element’s only purpose is to group a
list of elements of the same type together, a popular naming convention is to
call it a group, for example translationGroup : Listing 3-6.

Listing 3-6 Two layers of purely structural markup
<translationGroup>
<translationContainer>
<translation>leasú</translation>
<pos>n-masc</pos>

</translationContainer>
<translationContainer>
<translation>athchóiriú</translation>
<pos>n-masc</pos>

</translationContainer>
</translationGroup>

We have ended up with two layers of purely structural markup in the entry
schema. The source code of our entries has become difficult for humans to
read and navigate while editing. Most of the tags are purely structural, while
tags which surround actual human-readable content are the minority.

The trouble is, however, that the purely structural markup is not redundant.
It (or most of it) is there to encode lexicographically relevant facts, such
as the fact that this part-of-speech label belongs to this translation. The
matryoshkization seems unavoidable, a necessary consequence if one wants
to encode the facts one wants to encode. In the author’s experience,
lexicographers (and more importantly, IT professionals working in

3 Lexicography versus XML

40

lexicography) often tacitly accept highly verbose XML as a necessary evil, as
an inconvenience which needs to be accepted because there is no other way.

3.2.2 Matryoshkization versus your entry editor

A frequent counter-objection is that matryoshkization is not a problem
because editing tools can hide the verbosity from the human lexicographer.
It is, of course, possible in principle to create editorial user interfaces which
do not expose the human lexicographer to the verbosity of the underlying
XML. In practice, however, this is almost never done. All dictionary writing
systems in wide use today (see section 2.3) are basically schema-driven XML
editors where the lexicographer is fully exposed to the verbosity of the purely
structural markup (example in Figure 3-2).

Figure 3-2 A typical lexicographic XML editor (Lexonomy).

To “hide” the XML from the lexicographer, one needs to develop a customised
editorial UI which is specific to that particular dictionary (or, more accurately,
to that particular entry schema). This can be a non-trivial software
development task, especially if one considers the necessity to maintain the
UI throughout the lifetime of the project and to keep it synchronised with
changes to the schema. Most dictionary projects do not have the staff or the
budget for such software development effort. Most dictionary projects simply

3 Lexicography versus XML

41

procure an off-the-shelf dictionary writing system and customise it with their
own entry schema. Dictionary writing systems typically do not even allow
much more customisation than that. The only widely used dictionary writing
system where the XML can be hidden behind a custom-built entry editing
“widget” is Lexonomy, but this feature is rarely used there — precisely for the
reason that developing and maintaining the widgets is expensive.

Therefore, it is invalid to claim that matryoshkization does not matter
because it can be hidden. Matryoshkization cannot easily be – and rarely is –
hidden from human lexicographers. Matryoshkization is a real and existing
inconvenience on many dictionary projects.

3.2.3 Matryoshkization versus schema migration

The fact that entries are difficult to read and navigate for human
lexicographers is not the only consequence of matryoshkization. Another
consequence is that almost every change to the entry schema renders existing
entries invalid.

Let us illustrate that by returning to the hypothetical example of a schema
designer who is in the process of designing an entry schema for a new
dictionary project. In Step 1, the designer has designed a schema which
allows translations to be encoded in the simplest possible way, using just one
type of element called translation : Listing 3-7.

Listing 3-7 Translations without POS labels
<translation>leasú</translation>
<translation>athchóiriú</translation>

The project starts and several hundreds of entries are encoded using this
schema. Then the requirements change and it transpires that we need to add
part-of-speech labels to some (but not all) translations. The schema designer
goes back to the drawing board and follows through with Steps 2 and 3:
the schema is changed so that translations are now to be encoded in a
translationContainer element which can have two child elements, one
translation and zero or more pos : Listing 3-8.

3 Lexicography versus XML

42

Listing 3-8 Translations with optional POS labels
<translationContainer>

<translation>leasú</translation>
</translationContainer>
<translationContainer>

<translation>athchóiriú</translation>
<pos>n-masc</pos>

</translationContainer>

The schema designer has made two changes into the schema: (1) the new
pos element type is now an optional sibling of translation and (2) the new
translationContainer element type has taken the place of translation ,
“demoting” it to the role of its child. The first change does not cause pre-
existing entries to be invalid, but the second one does. The consequence is
that all previously encoded entries are now invalid as per the new schema —
including, frustratingly, those entries where we are not planning to add any
part-of-speech labels. So, changing the schema was only half the work: we also
need to write a schema migration script to make the existing entries valid
again.

Every time we add new non-structural element types into an entry schema,
such as pos in our example, the change usually does not cause pre-existing
entries to be invalid (as long as the new element is optional). But when
we add new purely structural markup into the schema, like we did when
we introduced translationContainer , the schema becomes matryoshkized, all
pre-existing entries become invalid and we need to fix that with a schema
migration script. In other words, matryoshkization not only makes entries
verbose, it also makes schema migrations more difficult.

A possible counter-objection is that this (= the necessity to write schema
migration scripts every time we matryoshkize the schema) is unavoidable
because the matryoshkization itself is unavoidable: there is no other way to
encode what we want to encode than through purely structural markup. To be
sure, this inconvenience is not unique to XML, schema migration scripts are
common everywhere data is managed, in particular in relational databases.
But that is beside the point. Avoidable or unavoidable, matryoshkization (and
the necessity for schema migration scripts) is a hindrance to agility in the
dictionary building process: it prevents the schema designer from making

3 Lexicography versus XML

43

changes to the schema unreluctantly and frequently, in response to evolving
project requirements.

3.2.4 Look-ahead matryoshkization

Experienced schema designers are often keen to avoid having to change the
entry schema halfway through a project. For that reason, schema designers
often choose to matryoshkize the schema even if there is no need for it yet,
a phenomenon we can call look-ahead matryoshkization. For example, when
designing a schema for encoding translations, the designer may introduce
the purely structural element translationContainer from the very start, as in
Listing 3-9, even though there is no need for it and a translation element on
its own would do. The designer is hoping to future-proof his or her schema:
should a requirement for an optional sibling to translation emerge in the
future, he or she will be able to introduce it into the schema without
invalidating existing entries and without having to write a schema-migration
script. This is perhaps wise and prudent — but if that requirement never
emerges, then we have ended up with a dictionary full of XML-encoded
entries which are more verbose than they need to be.

Listing 3-9 Translations with look-ahead matryoshkization
<translationContainer>

<translation>leasú</translation>
</translationContainer>

<translationContainer>
<translation>athchóiriú</translation>

</translationContainer>

3.2.5 Summary: XML in lexicography

Dictionary entries, when encoded in XML, tend to be overly verbose due
to a phenomenon called matryoshkization. Matryoshkization is caused by
the presence of purely structural markup. In addition to verbosity,
matryoshkization also causes difficulties during schema updates.

Some degree of matryoshkization and purely structural markup can be
observed in practically every discipline where XML is used, but (arguably)
it is more prevalent in lexicography than anywhere else. So, in the next

3 Lexicography versus XML

44

two sections, we are going to analyse in more detail the patterns of purely
structural markup which occur often in lexicography and we will ask the
question, what is so special about lexicographic content that makes
matryoshkization so prevalent?

3.3 Patterns of purely structural markup

We can define purely structural markup as such XML elements which contain
no text nodes as their direct children: all their child nodes are other XML
elements. We have seen how too much structural markup leads to the
phenomenon of matryoshkization, which is a special subcase of the
phenomenon of verbosity for which XML is often criticised. Let us now review
the patterns of purely structural markup that commonly occur in
lexicography. Broadly speaking, there are two patterns: the ‘list’ pattern and
the ‘headed’ pattern.

3.3.1 The ‘list’ pattern of purely structural markup

Listing 3-10 Example of the ‘list’ pattern
<translations>
<translationContainer>...</translationContainer>
<translationContainer>...</translationContainer>
<translationContainer>...</translationContainer>

</translations>

The first pattern is where a parent element wraps a sequence of child
elements which are all of the same type. It is there because the designer of the
schema probably thought it useful to group elements of the same type under
a common parent element, like in Step 4 of our fictional but realistic schema
design process.

The usefulness of such a grouping is debatable. The group thus created does
not seem to represent any lexicographic fact which a lexicographer might
want to communicate to the dictionary’s end-users. The parent wrapper is
almost always unnecessary in the sense that it conveys no information which
could not be inferred: the fact that there exists a list of translations is obvious
from the fact that there is a sequence of translation elements in the entry.

3 Lexicography versus XML

45

Grouping them under a common parent does not contribute any new
information (unless the common parent actually does have a purpose, such as
to carry attributes which apply to all its children).

Unnecessary grouping of this kind can be found in XML outside lexicography
too and tends to be advised against in XML styleguides (Ogbuji 2004). The
‘list’ pattern can almost always be explained away as a bad practice, and the
dictionary schema can be made less complex by simply removing the purely
structural elements.

3.3.2 The ‘headed’ pattern of purely structural markup

Listing 3-11 Example of the ‘headed’ pattern
<translationContainer>
<translation>athchóiriú</translation>
<pos>n-masc</pos>
<usage>formal</usage>

</translationContainer>

The second pattern is where a parent element wraps child elements of
different types, one of which can be considered the “head” and the others can
be seen as providing additional information about the head. An example is
translationContainer which can be said to be headed by translation , while
the other children pos and usage provide additional information about the
head.

Unlike the list pattern, the headed pattern cannot be explained away as a bad
practice. Its purpose is to encode lexicographic facts which the lexicographer
wants to communicate to the end-user, for example the fact that this pos

element belongs to this translation element. The purely structural
translationContainer element is a tool for representing that fact.

Whenever during the process of designing an entry schema for a dictionary a
requirement arises to encode something which appears to have a “head” plus
a few other elements that provide additional information about the head, the
headed pattern of purely structural markup is a popular choice — as it was for
our fictional schema designer in Step 3 above.

3 Lexicography versus XML

46

Why is the headed pattern of purely structural markup so popular in
lexicography? The reason is that much of lexicographic content inherently is
headed: we will show multiple examples of that in the following section.

3.4 The headedness of lexicographic data

In XML, at an abstract level, every XML element can be seen as a pair of two
things: a name and a value. The name is what we have in the opening and
closing tags, while everything between the tags is the value which can be
either plain text, or a list of child elements, or a mixture of both (so-called
mixed content), or it can be empty. But the point is that an XML element
always consists of exactly two things: a name and a value, even if the value is
complex.

In lexicography, on the other hand, much of the content we encounter would
be modelled more efficiently as a triple, as a group of three things: a name,
a value, and a list of modifiers containing zero, one or more other such
triples. The name and the value together are the head. Many content objects
in lexicography are inherently headed, but headedness is difficult to model
in XML without purely structural markup. Let us look at some examples of
lexicographic content objects which are headed.

3.4.1 Translations are headed structures

Listing 3-12 A typical XML encoding of a translation
<translationContainer>
<translation>athchóiriú</translation>
<pos>n-masc</pos>
<usage>formal</usage>

<translationContainer>

Listing 3-13 The same translation in concise pseudocode
translation: athchóiriú
pos: n-masc
usage: formal

3 Lexicography versus XML

47

In many bilingual dictionaries, translations are given simply as strings of text
with no other information. Such translations are not headed, of course. But,
in an encoding-oriented dictionary (i.e. a dictionary which tells you how to
express something in a language in which you are not fluent), translations
are often decorated with grammatical annotations (part-of-speech labels) and
pragmatic annotations (usage labels). Such translations are headed: the
translation element together with its plain-text value is the head, while the
other elements (pos and usage) are modifiers of the head. Purely structural
markup (in the form of a parent element such as translationContainer) is
often used to encode this in XML.

3.4.2 Example sentences are headed structures

Listing 3-14 A typical XML encoding of an example sentence
<exampleContainer>
<example>Ich nehme den Regenschirm mit.</example>
<source>bib-147_12</source>
<translation>I’ll take my umbrella with me.</translation>

</exampleContainer>

Listing 3-15 The same example sentence in concise pseudocode
example: Ich nehme den Regenschirm mit.
source: bib-147_12
translation: I’ll take my umbrella with me.

In many dictionaries, example sentences are not just strings of text: they
come with additional content such as bibliographical references (to tell us
where the example comes from), usage labels (to tell us, for instance, that this
sentence is colloquial) and translations. In other words, dictionary examples
are headed structures: the example element together with its plain-text value
is the head, while the other elements are modifiers of the head. Some of the
modifier elements can be headed structures too: for instance, it is imaginable
that translations could have their own modifiers, as in Listing 3-16.

3 Lexicography versus XML

48

Listing 3-16 Example sentences have translations which have usage labels
example: Ich gehe auf Nummer sicher.
translation: I’ll play it safe.
usage: informal

translation: I’ll stay on the safe side.
usage: neutral

translation: I will err on the side of caution.
usage: formal

3.4.3 Collocations are headed structures

Listing 3-17 A typical XML encoding of a collocate
<collocation>
<collocate>make</collocate>
<example>I have made a mistake.</example>
<example>Everybody makes mistakes.</example>

</collocation>

Listing 3-18 The same collocate in concise pseudocode
collocate: make
example: I have made a mistake.
example: Everybody makes mistakes.

It is becoming common for dictionaries to contain information about the
collocates of the headword: words which often occur together with the
headword in real-world language use. For instance, inside the entry for the
headword mistake we might find a block of information that tells us that the
headword collocates with the verb make (as in ‘to make a mistake’), and then
gives us some additional information about this collocation, such as some
usage labels or a few example sentences. So, in a dictionary entry, collocations
are headed structures: the collocate element together with its plain-text
value is the head, while the other elements are modifiers of the head.

3 Lexicography versus XML

49

3.4.4 Senses can be headed structures too

Listing 3-19 A typical XML encoding of a sense
<sense>
<definition>an institution where you store money</definition>
<translation>banque</translation>
<example>I got a large loan from the bank.</example>

</sense>

Listing 3-20 The same sense in concise pseudocode
definition: an institution where you store money
translation: banque
example: I got a large loan from the bank.

In lexicography, a dictionary entry is typically subdivided into one or more
senses. A sense is a container for things such as definitions, translations and
examples. Normally, a sense is not a headed structure because there is no
obvious “head”: no single element inside the sense where we could say that
all other elements are its modifiers. In XML, senses are practically always
encoded by means of purely structural markup: there is a sense element
which has no plain-text children of its own, but has many child elements such
as definition , translation and example .

But is it true that senses are not headed structures? There is a case to be made
that definitions are the heads of senses. A definition says that such-and-such
meaning of the headword exists, and the remaining elements inside the sense
can be understood as providing additional information about that meaning.

Not all dictionaries contain definitions. But, in those that do, it is possible to
understand senses as headed structures. In an XML encoding of senses, the
sense element is yet another incarnation of the ‘headed’ pattern of structural
markup.

3 Lexicography versus XML

50

3.4.5 Entries can be headed structures too

Listing 3-21 A typical XML encoding of an entry
<entry>
<headword>bank<headword>
<partOfSpeech>noun</partOfSpeech>
<sense>an institution where...</sense>
<sense>a stretch of land...</sense>

</entry>

Listing 3-22 The same entry in concise pseudocode
headword: bank
partOfSpeech: noun
sense: an institution where...
sense: a stretch of land...

We can perform the same re-analysis on entries as we did on senses. Entries
do not seem like obviously headed structures: they are simply containers
for various elements such as headwords, part-of-speech labels and senses.
But one of them does stand out as a possible candidate for being the head:
the headword! It is, after all, called a headword for one good reason: its
purpose is to head the entire entry, while the rest of the entry is about the
headword. On that analysis, even entire dictionary entries can be understood
as headed structures, and the very existence of an entry element in XML-
encoded dictionaries can be understood as an incarnation of the ‘headed’
pattern of structural markup, a consequence of matryoshkization.

3.5 How to encode headedness in XML

We have seen in the previous section that headed content structures are
far from uncommon in lexicography: it so happens that much of dictionary
content is inherently headed. And, in the sections before that, we have seen
that to encode headed structures in XML, purely structural markup (more
specifically, the ‘headed’ pattern of purely structural markup) is commonly
used in lexicography, and that this is problematic because it has negative
implications on readability and because it causes complications during
schema updates.

3 Lexicography versus XML

51

The question to ask now is, are there other ways to encode headedness in
XML? Is it possible to encode headed structures in XML without recourse to
purely structural markup? In this section we will evaluate several options,
some obvious and some less so.

3.5.1 Strategy 1: parentless sequencing

We have said before that the purpose of purely structural markup (in the
‘headed’ pattern) is to group elements together: to indicate which pos

belongs to which translation and so on. Theoretically, it might be possible to
achieve the same goal without purely structural markup, by relying only on
the listing order of elements, as in Listing 3-23.

Listing 3-23 Two headed structures encoded as parentless sequencing
<translation>leasú</translation>
<pos>n-masc</pos>
<translation>athchóiriú</translation>
<pos>n-masc</pos>

In this scenario, we would “know” that each pos element belongs to its
nearest preceding sibling translation element. The problem with this
approach is that this fact is not encoded explicitly in the XML, and tools
processing this XML in the future may not “know” it as we “know” it now: to
an XML parser, pos and translation are simply siblings and nothing else. We
would need to program additional logic on top of the XML parser to make that
explicit. So, parentless sequencing defeats the purpose of encoding entries in
XML in the first place: to take facts which are implicit and make them explicit.

3.5.2 Strategy 2: mixed content

Yet another suggestion is to represent headedness as mixed content. Mixed
content is a strategy used in XML to encode inline markup, a typical example
is tags such as b , i and a in HMTL: see Listing 3-24.

3 Lexicography versus XML

52

Listing 3-24 HTML with mixed content
<p>
This is very important.

</p>

To say that an XML element has “mixed content” is another way of saying
that its child nodes are a sequence of text nodes and elements. This is a
good strategy for encoding inline markup. Could it be a good strategy for
representing headedness, as in Listing 3-25?

Listing 3-25 A headed structure encoded as mixed content
<translation>
athchóiriú
<pos>n-masc</pos>
<usage>formal</usage>

</translation>

The problem is that there is no formal distinction (to an XML parser) between
the head (= the element’s first child) and the modifiers (= the element’s other
children). If we ask an XML parser to give us the text of the translation

element, it will give us a concatenation of all the text node descendants,
which is the string athchóiriú n-masc formal (with whitespace collapsed).

The problem becomes more apparent if the head’s value contains inline
markup, like in Listing 3-26. Here, the example element has four children: the
text to implement electoral (with a trailing space), followed by the h element,
followed by two more elements. An XML parser has no way of knowing that
the first two children are part of the head’s value and the others are not.

Listing 3-26 A headed structure, encoded as mixed content, where the head has
inline markup
<example>
to implement electoral <h>reform</h>
<source>EU legislation</source>
<translation>leasú toghchánach a chur i bhfeidhm</translation>

</example>

3 Lexicography versus XML

53

The mixed content strategy is only one step away from purely structural
markup. The one step is to take those children that constitute the head’s value
and wrap them in yet another element, as in Listing 3-27.

Listing 3-27 XML with purely structural markup
<exampleContainer>
<example>to implement electoral <h>reform</h></example>
<source>EU legislation</source>
<translation>leasú toghchánach a chur i bhfeidhm</translation>

</exampleContainer>

This is an improvement on the mixed content strategy because the head value
is now explicitly demarcated from the rest. But the downside is that our
schema is now matryoshkized, with all the disadvantages we have identified
above.

3.5.3 Strategy 3: children as attributes

A simple suggestion that might occur to a schema designer wanting to avoid
purely structural markup is to use XML attributes instead: the head would be
encoded as an XML element and all its children would become its attributes,
as in Listing 3-28.

Listing 3-28 XML with the children as attributes
<translation pos="n-masc" usage="formal">
athchóiriú

</translation>

The problem with this suggestion is that it does not scale beyond a few simple
examples. This is because XML attributes come with several inconvenient
limitations:

- Attribute names have to be unique, meaning that there can never be, for
example, two pos attributes or two usage attributes in an element.

- Attribute values are plain text with no structure. So, it is impossible for an
attribute to have its own attributes, or any other kind of child nodes, or to
contain a list of values. In other words, an XML attribute is similar to an XML

3 Lexicography versus XML

54

element in that it is a name-value pair, but with the additional limitation that
the value must be plain text.

3.5.4 Strategy 4: heads as attributes

The other way around is to encode values as attributes with a pre-agreed
name such as value . Children are then encoded as normal XML elements, as
in Listing 3-29.

Listing 3-29 XML with the head as an attribute
<translation value="athchóiriú">
<pos value="n-masc"/>
<usage value="formal"/>

</translation>

This encodes headedness successfully but has an even larger problem than
the previous strategy: now all values must be plain text, inline markup is
impossible everywhere.

3.5.5 Conclusion: headedness in XML

The conclusion for this section is that even though it is possible to find
strategies in XML to avoid purely structural markup and/or to represent
headedness, each strategy comes with its own trade-offs. These trade-offs
may or may not be acceptable to the schema designer depending on the
requirements of the project, for example whether inline markup is needed or
not.

3.6 How to encode headedness in other data
languages

Lexicography abounds in headed structures but the formal language we use
in lexicography most often, XML, was never designed for it and can only
accommodate it awkwardly. This is unfortunate. But can we perhaps find
another language to use in lexicography instead of XML, one that can encode
headedness more gracefully? In this section we will evaluate JSON and YAML

3 Lexicography versus XML

55

as currently popular alternatives to XML, we will look at SGML as XML’s
historical predecessor, and last but not least we will look at one less well-
known language called NVH. In each case we will ask whether the language
is able to encode headed structures without purely structural markup, and if
not, how the language would need to change to support headedness.

3.6.1 Headedness in SGML

XML’s historical predecessor was SGML (ISO 8879:1986, Goldfarb and Rubinsky
1990). Invented primarily as a text markup language, SGML was1 more
complex than XML, but this complexity enabled many markup minimisation
features which, in retrospect, made SGML into a language which supported
headedness.

One of SGML’s markup minimisation features was the ability to omit closing
tags. Early versions of the HTML standard had a similar feature. So, it was
possible to write code like in Listing 3-30.

Listing 3-30 SGML with minimised markup
<translation>athchóiriú
<pos>n-masc

The parser would implicitly “assume” the missing closing tags from its
knowledge of the document schema. If the schema says that the translation

and pos elements can only have text content and no child elements, then
obviously they must be siblings and the parser will read the code as if the
closing tags where there, like in Listing 3-31.

Listing 3-31 SGML without minimised markup
<translation>athchóiriú</translation>
<pos>n-masc</pos>

1 We are talking about SGML in the past tense, as if SGML no longer existed. This is of
course not true, SGML still exists. The past tense here is only a reflection of the fact
that SGML is rarely used anymore, at least for new projects.

3 Lexicography versus XML

56

This feature of SGML made it possible to write less verbose code, but it still
does not turn SGML into a headedness-supporting language. The markup
minimisation feature which does turn SGML into such a language is
something called implicit elements. In SGML, it was possible to specify in the
document schema that certain element tags can be left out altogether, even
though the parser would still “assume” them to be there. Let us demonstrate
that on an example where we take a matryoshkized XML fragment and re-
encode it in SGML. We start with a fragment like in Listing 3-33.

Listing 3-32 SGML with all elements explicit
<translation>
<value>athchóiriú</value>
<pos>n-masc</pos>
<usage>formal</usage>

<translation>

Then, in the document schema, we specify that the value element is implicit.
It now becomes possible to leave its opening and closing tags out, as in Listing
33.

Listing 3-33 SGML with an implicit element
<translation>
athchóiriú
<pos>n-masc</pos>
<usage>formal</usage>

<translation>

This looks similar to our attempt to encode headedness in XML through
mixed content, but the trick is that this is not mixed content. When parsing
this code fragment, the SGML parser will understand from the schema that

1. translation is not allowed to have any text content, and

2. translation is required to have as its first child an element called value

which is required to have text content.

These facts will trigger the SGML parser into interpreting the code as if
the value element were actually there, like in the previous code sample.
All this means that SGML could, in principle, be used in lexicography to

3 Lexicography versus XML

57

encode headed structures in such a way that schema migration does not
cause problems. Let us assume we start with a simple entry schema where
translations are encoded like in Listing 3-34.

Listing 3-34 This SGML fragment validates in both schemas
<translation>
athchóiriú

<translation>

If we then update the schema such that

1. translation is no longer allowed to contain text content, and

2. translation is required to a contain an implicit element called value (as
well as other optional children such as pos and usage)

then the original entries are still parsed as valid: the SGML parser “assumes”
the implicit element to be there. We can matryoshkize the schema without
having to matryoshkize the data, and no schema migration scripts are needed.

To the author’s knowledge, however, this property of SGML was never taken
advantage of in lexicography. Lexicography began digitising itself at a time
when SGML had already peaked in popularity and XML was seen as its
successor. And, to be sure, the flexibility of SGML came at a cost, as SGML
was hard to implement: all the markup minimisation features made it difficult
to write parsers for SGML. XML evolved out of SGML to solve precisely that
problem, as a subset of SGML which is more easily processable by machines. In
its evolution from SGML to XML, the language gained machine processability
and became easy to adopt, but lost support for headedness and gained on
verbosity.

3.6.2 Headedness in JSON

As a serialisation format for data, JSON (ECMA 404, ISO/IEC 21778:2017) is
often claimed to be more easily human-readable than XML. JSON is definitely
less verbose than XML, mainly because the names of objects do not have to be
repeated at the end of every object, which makes JSON significantly faster for

3 Lexicography versus XML

58

(uncompressed) transmission than XML (Nurseitov et al. 2009). Listing 3-35
shows how an entry fragment might be encoded in JSON.

Listing 3-35 How a translation might be encoded in JSON
{
"translationContainer": {
"translation: "athchóiriú",
"pos": "n-masc",
"usage": "formal"

}
}

Apart from this, however, JSON has the same problem as XML: it does not
support headed structures. The code in Listing 3-35 is JSON’s equivalent of
matryoshkization and purely structural markup: translationContainer is the
purely structural element because it is an object which contains no literal text
as its immediate child, all its children are other objects.

None of the strategies discussed for XML in Section 3.5 have equivalents
in JSON. The parentless sequencing strategy is impossible in JSON because
JSON requires the names inside an object to be unique: Listing 3-36 is illegal
in JSON. The mixed content strategy is not an option either because JSON
does not allow mixing literal values with name-value pairs: Listing 3-37 is
also illegal in JSON. The only way to represent mixed content in JSON is to
use array syntax [...] which comes with its own share of purely structural
markup. And finally, the remaining two options discussed for XML which
make use of attributes have no equivalents in JSON because there is no such
thing as attributes in JSON.

Listing 3-36 Parentless sequencing (illegal in JSON)
{

"translation": "leasú",
"pos": "n-masc",
"translation": "athchóiriú",
"pos": "n-masc"

}

3 Lexicography versus XML

59

Listing 3-37 Mixed content (illegal in JSON)
"translation: {

"athchóiriú",
"pos": "n-masc",
"usage": "formal"

}

We have seen how, in XML, every element is basically a name-value pair,
where the value can be a literal value or a list of children. In JSON, every object
member is similarly a name-value pair. The name appears before the colon
: and the value after it, where the value can be either a literal or a complex
object. The underlying metamodel of JSON is therefore similar to that of XML.
When we ignore the superficial differences in the syntax of the two languages,
there are only two relevant differences in their object models (after Bourhis
et al. 2020, Section 2.3): data elements in JSON are unordered whereas in XML
they are ordered, and the keys inside a JSON object must have unique names
whereas in XML the children of a parent are not required to have unique
names.

In theory, it would be possible to extend the JSON language so that name-
value pairs can optionally become triples consisting of a name, a value and
an object containing the children. Listing 3-38 shows what a data fragment
might look like when encoded in such an extension of JSON. This would
introduce built-in support for headedness into JSON. This is, however, only a
hypothetical speculation as no such JSON extension exists.

Listing 3-38 A hypothetical extension of JSON to support headedness
"translation: "athchóiriú" {

"pos": "n-masc",
"usage": "formal"

}

3.6.3 Headedness in YAML

A popular serialisation language which is even less verbose than JSON is
YAML. YAML was designed deliberately to be as human-readable and human-
writable as possible. Where other languages use (curly, pointy...) brackets
and quotation marks to demarcate where things begins and end, YAML uses

3 Lexicography versus XML

60

whitespace and indentation. If data encoded in JSON look and feel like source
code in JavaScript or some other C-style language, then data encoded in YAML
look and feel like source code in Python. Listing 3-39 shows how an entry
fragment might be encoded in YAML.

Listing 3-39 How a translation might be encoded in YAML
translationContainer:
translation: athchóiriú
pos: n-masc
usage: formal

This is undoubtedly as “unverbose” as we can get from any data language.
But, crucially, this still does not represent the fact that the string athchóiriú

is the head of the whole structure. Same as in the JSON example,
translationContainer is a purely structural element.

Like XML and JSON, YAML has no support for headedness, and the only way to
encode headed structures is either to matryoshkize the data through purely
structural elements, or to accept some other trade-off. The strategy of
parentless sequencing and the mixed content strategy are not possible in
YAML (without introducing their own purely structural markup), and the
two strategies based in attributes are not possible either because there is no
concept of attributes in YAML.

As a thought experiment, how would the syntax of YAML need to change to be
able to accommodate headed structures? It would have to be possible for an
object to have both a literal value and a list of children, like in Listing 3-40.

Listing 3-40 A hypothetical extension of YAML to support headedness
translation: athchóiriú
pos: n-masc
usage: formal

This is illegal in YAML, but it is in fact the same syntax we have used
throughout this chapter to illustrate headed structures. An extension like this
would turn YAML into a serialisation language which supports headedness.

3 Lexicography versus XML

61

3.6.4 Headedness in NVH

NVH (Name-Value Hierarchy)1 is a less well-known data language conceived
by the author of this thesis and developed by computational lexicographers
in Lexical Computing. NVH is used by Lexical Computing in-house during the
semi-automated production of dictionaries (Jakubíček et al. 2018), an agile
process where frequent schema updates are common.

The syntax of NVH is similar to YAML, so that an NVH document may (if
certain constraints are met) also be a valid a YAML document. Additionally,
NVH differs from YAML in that it implements the proposal suggested in the
previous section: an element in NVH is allowed to have both a literal value
and a list of children, like in Listing 3-40. Listing 3-41 shows what a complete
dictionary entry looks like when encoded in NVH.

NVH is the only data language in existence designed specifically with
headedness in mind. Unlike SGML, which supports headedness at the expense
of increased parsing complexity, NVH documents are as simple to parse as
YAML or JSON. This is because NVH is built not on the notion of name-value
pairs but on the notion of name-value-children triples.

Listing 3-41 An entire entry encoded in NVH
headword: house
pos: noun
phon: haʊs
soundfile: house.mp3

sense:
definition: a built structure with walls and a roof for living in
label: Construction
translation: hiša
pos: feminineNoun

translation: dom

pos: masculineNoun
label: informal

collocation: a large house
translation: velika hiša
example: We bought a large house.
translation: Kupili smo veliko hišo.

1
https://www.namevaluehierarchy.org/

3 Lexicography versus XML

62

https://www.namevaluehierarchy.org/

3.7 Conclusion

This chapter has challenged the age-old orthodoxy in computational
lexicography that dictionary data is best encoded in XML. XML is widely used
in lexicography but, on closer inspection, it turns out not to be the best fit
for its requirements. We have seen how XML, as well as other widely used
languages such as JSON and YAML, have no built-in support for headedness,
and how attempting to represent headed data in these languages results in an
undesirable proliferation of matryoshkization and purely structural markup.

3 Lexicography versus XML

63

3 Lexicography versus XML

64

4 Towards a lexicographic data language
The previous chapter brought Name-Value Hierarchy (NVH) onto the stage,
a language created specifically for encoding headed content. In this chapter,
we return to NVH to introduce its syntax and its design principles more
fully. Following this introduction we will contrast NVH against other data
languages (XML, SGML, JSON, YAML) and we will evaluate how well or badly
each meets the needs of lexicography.

4.1 The design of NVH

The idea for the language now known as NVH emerged during discussions
between the author of this thesis and colleagues in Lexical Computing. Its
origins can be traced to our frustration with the inability of XML to represent
headed content efficiently, without matryoshkisation and without frequent
schema migrations.1 In addition to good headedness support, NVH has
borrowed various features from other languages. From YAML, NVH takes its
simple, human-writable syntax. From XML, NVH takes its order-preserving
nature and the ability of nodes to have multiple children of the same name –
more about all this below. The result is a formal language which is optimized
for the needs of a modern, agile, digital-first lexicography.

There is no formal specification of NVH (yet). There is a website2 which
contains an informal description of the language and a GitHub repository3

which hosts two implementations of an NVH parser: one in JavaScript
(written by the author of this thesis) and another in Python (written by
colleagues in Lexical Computing). This section summarizes the consensus in
this small but growing NVH community as to the syntax of the language.

1 What opened the door for something like NVH was a thought experiment: what if
XML attributes could have structure inside them, just like XML elements do? What
would a language that allows this look like? In the end the language ended up looking
not at all like XML: if anything, NVH is most similar to YAML.
2
https://www.namevaluehierarchy.org/

3
https://github.com/michmech/nvh

65

https://www.namevaluehierarchy.org/
https://github.com/michmech/nvh

4.1.1 A short introduction to the syntax of NVH

Listing 4-1 A code fragment in NVH
example: to implement electoral reform
source: EU legislation
translation: leasú toghchánach a chur i bhfeidhm
label: formal
label: legal

translation: athchóiriú toghcháin a chur i bhfeidhm
label: informal

Listing 4-1 shows a fragment of code in NVH. Each line represents the head
of an NVH element. The head consists of the element’s name, followed by a
colon, followed by the element’s value.

There are no formal rules for what constitutes a valid element name in NVH.
The usual practice is that they are “technical” names (like variables in a
programming language, or element names in XML), written without
whitespace, in camelCase.

The element’s value is a single-line string without line breaks. Any leading or
trailing whitespace is ignored. The value can be an empty string.

Each element can have any number of child elements. The hierarchy between
parent elements and child elements is indicated by indentation from the
left. For example, in Listing 4-1, the element example has two child element,
source and translation . The fact that an element can have both a value and a
list of children is what gives NVH its ability to represent headedness without
matryoshkization.

There are no formal rules for whether the indentation should be done using
tabs of spaces, and if spaces, how many. The JavaScript parser accepts one tab
character or two spaces as one level of indentation. The Python parser accepts
any number of tabs or spaces as long as they are consistent throughout the
document.

NVH does not require a valid NVH document to have a single top-level
element. Both NVH parsers are able to parse NVH documents consisting of
several top-level elements – typically, several dictionary entries.

4 Towards a lexicographic data language

66

NVH has optional support for inline markup, implemented in the JavaScript
parser but not in the Python parser. Inline markup is treated as ordinary
child elements, and the text the markup applies to is identified in a stand-
off way, as Listing 4-2 illustrates: the headwordHighlight element marks up
an occurrence of the headword, and the collocateHighlight element marks
up the occurrence of its collocate. The @1 at the end of the line does two
things: it tells the parser that this element is inline markup, and the number
tells the parser that it applies to the first occurrence of the substring. As
the child elements under collocateHighlight show, the markup elements can
have their own hierarchies of children and descendants underneath
themselves, like any other NVH elements.

Listing 4-2 NVH with inline markup
example: We bought a larger house in the village.
headwordHighlight: house @1
collocateHighlight: larger @1

lemma: large
pos: adj

4.1.2 Key differences between NVH and YAML

NVH looks superficially similar to YAML but there are important differences
which make the two languages incompatible.

In NVH, an element can have both a value and a list of children. In YAML
this is illegal: an element can only have one or the other.

▪

In NVH, the children of an element are not required to have to have
unique names: an element can have multiple children with the same
name. This is illegal in YAML and has to be represented using YAML”s
formalism of lists instead (similar to arrays in JSON).

▪

NVH is an order-preserving language: the order in which elements are
given is guaranteed to go through parsing and subsequent serialization
unchanged, and the position of an element in relation to its siblings is
part of the object model produced by the parser. This is not the case with
YAML (except for list items).

▪

4 Towards a lexicographic data language

67

All of this means that the code in Listing 4-1 would not pass for well-formed
YAML. To represent the same content in YAML one would have to resort to
various forms of matryoshkization as shown in Listing 4-3.

Listing 4-3 The same data as in Listing 4-1 but in YAML
example:
text: to implement electoral reform
source: EU legislation
translations:
- text: leasú toghchánach a chur i bhfeidhm
labels:
- formal
- legal

- text: athchóiriú toghcháin a chur i bhfeidhm
labels:
- informal

4.2 Desiderata for a lexicographic data language

NVH was created to match the needs of lexicography better than other
languages. Is the language actually meeting this goal? If we were to create an
ideal encoding language for lexicography, what features should the language
have? Which features of XML, SGML, JSON, YAML and NVH would we like to
bring into this new language? This section will list some criteria and evaluate
each language against them.

4.2.1 Avoiding purely structural markup

Avoiding purely structural markup is important in lexicography for human
readability and as a form of preparedness for future schema updates.

XML encourages purely structural markup. To avoid it in XML, one has
to resort to strategies which come with trade-offs (see Section 3.5).

▪

SGML makes it possible to avoid purely structural markup thanks to
its markup minimisation features. However, this brings an increased
complexity for parsing.

▪

In JSON and YAML, purely structural markup is practically unavoidable
— although the extension proposed in Sections 3.6.2 and 3.6.3, which

▪

4 Towards a lexicographic data language

68

4.2.2 Headedness

Support for headedness is obviously a high-priority requirement for a
lexicographic markup language, given how prevalent headedness is
dictionaries.

4.2.3 Explicit listing order

One requirement which is important in lexicography is preserving the order
of items. The order in which items are listed needs to be fixed, remembered
during parsing, and guaranteed to survive every parsing-serialisation
roundtrip. Having things listed in a given order is almost always an implicit
requirement when encoding lexicographic data.

would add headedness support to the languages, would also remove the
need for most purely structural markup.

NVH makes it relatively easy to avoid purely structural markup thanks
to its built-in support for headedness.

▪

XML has no built-in support for headedness, except when using one of
the attributes-based strategies, which however comes at the expense of
the ability to represent in-line markup on either the head element or the
child elements.

▪

SGML has built-in support for headedness if the encoding makes use of
SGML’s markup minimisation features. This comes at the expense of easy
machine processability: parsing SGML is a complex task.

▪

JSON and YAML have no built-in support for headedness either. The
languages would need to be extended along the lines suggested in
Sections 3.6.2 and 3.6.3 in order to support headedness.

▪

NVH has built-support for headedness, but at the expense of making
inline markup difficult (although not impossible, unlike XML when
combined with attributes-based strategies).

▪

4 Towards a lexicographic data language

69

4.2.4 Non-unique child names

It is common in lexicography that a content object has multiple children of
the same kind, for example an entry contains several senses, a sense contains
several translations. To encode this without purely structural markup, the
language has to allow the children of an element to have non-unique names.

XML, SGML and NVH meet this requirement perfectly. The “order
matters” principle is part of the design of the languages.

▪

In JSON and YAML, the children of a parent are not in any explicit order.
For example, in JSON, every object is basically a collection of key–value
pairs, and this collection is unordered. In practice JSON and YAML
parsers and serializers often do preserve the order of items, but this is
not guaranteed. The only way to fix the order of items is to encode them
as an array (in JSON) or as a list (in YAML), which brings its own share of
purely structural markup.

▪

In XML and SGML, non-unique child names are allowed. It is possible, for
example, for an entry element to have multiple children named sense ,
or for a sense element to have multiple children named translation .

▪

In JSON and YAML, non-unique child names are not allowed, and so code
fragments such as Listings 4-4 and 4-5 would be invalid in JSON and
YAML. To remodel it into legal JSON or YAML one would need to resort to
some form of purely structural markup, for example using array syntax
[...] in JSON.

▪

NVH, in spite of its superficial similarity to YAML, does allow non-unique
child names. So a code fragment like Listing 4-5, although invalid in
YAML, is valid in NVH.

▪

4 Towards a lexicographic data language

70

Listing 4-4 Invalid JSON with non-unique child names
{
"sense": {

"gloss": "completely",
"translation": "go hiomlán",
"translation": "go huile agus go hiomlán"

}
}

Listing 4-5 Invalid YAML (but valid NVH) with non-unique child names
sense:

gloss: completely
translation: go hiomlán
translation: go huile agus go hiomlán

4.2.5 Inline markup

One of XML’s strong points is its good support for inline markup. Here XML
shows its origins as a markup language (as opposed to a data language). This
heritage proved itself useful in the early stages of digitisation in lexicography
when dictionary entries were treated rather like small documents, consisting
of running text which needed to be marked up. Dictionary encoding used to
be like text encoding in the early stages of its digitisation, and XML’s support
for inline markup was useful in that scenario.

Since then, dictionaries have evolved away from the text encoding paradigm.
Dictionary entries have ceased to look like running text with markup and
have started to look more like structured data records. Consequently, the need
for inline markup has diminished. Inline markup is now used fairly rarely in
lexicography. The only application where inline markup plays a role (in some
dictionaries) is to mark up the occurrences of headwords (and sometimes
collocates) inside example sentences and definitions. In other wors, in-line
markup is a low-priority requirement in lexicography: other requirements,
such as headedness or an explicit listing order, are more important.

XML and SGML have good built-in support for inline markup, as
explained.

▪

In JSON and YAML, inline markup is difficult to encode as neither
language has any built-in support for it. One must either matryoshkize

▪

4 Towards a lexicographic data language

71

4.2.6 Easily machine-processable

A data language is easily machine processable if it is relatively easy to write
parsers for it, if the language is (in some sense of the word) simple. This
implies a subjective judgement, but the following is probably a fair summary.

4.2.7 Human-friendly

We have discussed in Section 3.2.2 how human-friendliness is important in
lexicography because human editors are usually exposed to the full verbosity
of the data language. A data language is human-friendly to the extent that
it is human-readable and human-writable. What that actually means may
differ from human to human, but in the author’s opinion, a human-friendly
language should (1) have as little syntactic punctuation (such as pointy
brackets, curly brackets) as possible and (2) indicate structure by something
highly visual, such as whitespace and indentation, instead of paired brackets.

the data (turn a string into an array of strings and objects) or invent
a custom-built formalism (using some form of markdown, or stand-off
markup based on start and end indexes).

NVH has optional support for inline markup through stand-off
annotation.

▪

XML (arguably) is easily machine-processable if one ignores optional
complications such as namespaces, CDATA nodes and named entities.

▪

SGML (arguably) is not easily machine-processable due to its markup
minimisation features which require the parser to have access to the
schema and to perform inference during parsing in order to infer closing
tags and implicit elements.

▪

JSON, YAML and NVH (arguably) are easily machine-processable.▪

XML and SGML (arguably) possess a low degree of human-friendliness
due to the fact that they contain a lot of syntactic punctuation (although
some of it can be minimised in SGML) and because structure is indicated

▪

4 Towards a lexicographic data language

72

4.2.8 Non-desiderata

To clarify the requirements lexicography has for a formal language, it is useful
to list the non-requirements too: features which formal languages often have
but lexicography has no need for them.

by paired tags with matching names, which may not correspond to
whitespacing and indentation.

JSON scores better than XML and SGML on human-friendliness because
it contains less syntactic punctuation, but worse than YAML and NVH
because it still does contain some syntactic punctuation and because
structure is indicated by paired brackets.

▪

YAML and NVH are practically the same in this respect and both possess
a high degree of human friendliness. There is almost no syntactic
punctuation, and structure is indicated through indentation.

▪

Long text support. Lexicographic content does not tend to have long
paragraphs of text. Most pieces of text are short, consisting of just one
or two words. The longest text items in a dictionary are definitions and
example sentences, and even these are usually not longer that what fits
on a single line in a typical text editor.

▪

Data types other than text. Most lexicographic content is simply text.
There is almost no need for other data types such as numbers, true/
false values, or enumerations. The only occasional exceptions are data
about the frequency of headwords (whole numbers) and references to
controlled vocabularies (such as part-of-speech labels) – these can still be
handled simply as text at the level of serialisation.

▪

Whitespace handling. Text nodes in tree-structured lexicographic
content tend to be short “one-liners” with no line breaks and no leading
or trailing whitespace. There is no need for complex white-space
handling rules like in HTML or XML: when to collapse it into a single
space and when not, when is it significant and when not, etc.

▪

4 Towards a lexicographic data language

73

4.2.9 Scorecards

This preceding section has listed off a lexicographic “wishlist” of criteria
for an ideal serialisation language, and evaluated briefly how each language
meets or does not meet those criteria. The results are summarised in Table 4-1
for XML and in Table 4-2 for the remaining languages. Answers that assume
a subjective judgment are labelled with a question mark. In Table 4-2, the
column labels JSON with extensions and YAML with extensions means JSON and
YAML with extensions proposed in Sections 3.6.2 and 3.6.3.

As we have seen, there is not a single data language in existence today which
would tick all the boxes on the wishlist, although NVH and SGML come close.
An interesting observation is that XML, in spite of being widely used in
lexicography, is not the best possible fit for the requirements of the field, due
mainly to its lack of support for headedness.

Namespaces. The inventory of content types in any dictionary is a
managably small closed set where naming conflicts are easily avoided.
Even when the entry schema does become complex, naming conflicts can
be avoided simply through the use of prefixes on mames. Entry schemas
in lexicography tend to be “closed worlds”, there is no need for a globally
resolvable namespacing mechanism like in XML or RDF.

▪

4 Towards a lexicographic data language

74

Table 4-1 A lexicographic scorecard for XML

XML with
matryosh-

kization

XML with
parentless
sequencing

XML with
mixed

content

XML with
children as
attributes

XML with
heads as

attributes

Avoid purely
structural
markup

No Yes Yes Yes Yes

Headedness No No No Yes Yes

Explicit
listing order

Yes Yes Yes No Yes

Non-unique
child names

Yes Yes Yes No Yes

Inline
markup

Yes Yes Yes No No

Easily
machine-
processable

Yes? No? No? Yes? Yes?

Human-
friendly

No? No? No? No? No?

4 Towards a lexicographic data language

75

Table 4-2 A lexicographic scorecard for languages other than XML

SGML JSON
JSON with
extensions YAML

YAML with
extensions NVH

Avoid purely
structural
markup

Yes No Yes No Yes Yes

Headedness Yes No Yes No Yes Yes

Explicit
listing order

Yes No No No No Yes

Non-unique
child names

Yes No No No No Yes

Inline
markup

Yes No No No No No?

Easily
machine-
processable

No? Yes? Yes? Yes? Yes? Yes?

Human-
friendly

No? No? No? Yes? Yes? Yes?

4 Towards a lexicographic data language

76

4.3 Conclusion: notations matter

Comparing NVH to other languages brings to light one important fact about
language design in general: creating a new language (where by language
we mean any formal notation including programming languages and data
languages) always involves certain trade-offs. One trade-off is that between
the language being expressive and it being easily machine-processable (or
computationally tractable in the words of Levesque and Brachman 1985): we
have seen how SGML, while highly expressive, is difficult to write parsers for.
Another trade-off is between convenience and parsimony (Halpin and Morgan
2008, page 61) where convenience can be read as a synonym for “human-
friendliness” and parsimony means “making use of as few concepts as
possible”. These two goals are often in opposition. A language built from
the smallest possible number of concepts is not necessarily convenient for
humans to use. This is why programmers prefer to write code in higher-order
languages such as Python and C# instead of purely binary strings of ones and
zeros, even though the binary notation employs a smaller number of concepts
and is therefore more parsimonious. One could argue that XML, JSON and
YAML are more parsimonious than NVH because they analyse everything into
name-value tuples, whereas NVH is more “extravagant” because it analyses
into name-value-children triples. Yes, XML, JSON and YAML are able to
represent the same content as NVH using a simpler concept than NVH. But
they do it in a way which fails to capture the higher-level abstraction of
headedness, and this results in matryoshkised code which is less human-
friendly, not to mention complications associated with schema migrations
etc. If the language is human-facing – which in lexicography it is – then it
makes sense to make sure that the language operates with the same concepts
the humans think in: triples not tuples.

Similarly to programming languages, notations for encoding data are not
intended just for computers, they are intended for humans too, they have
“cognitive dimensions” (Green 1989, Green and Petre 1996). A good data
language is one which humans find easy to read, easy to write, and even easy
to “think in”. In the words of Pemberton (2017), “notations affect what you
can do with them”. A trivial example is the notation we use for representing

4 Towards a lexicographic data language

77

numbers in everyday life. The decimal notation (or any other position-based
notation) makes it relatively easy to perform multiplication and division on
two numbers, the algorithms for doing that are taught to children in primary
schools, whereas Roman numerals make multiplication and division
prohibitively difficult (Petzold 2000, page 50). For humans, notations are
“tools of thought” (Iverson 1980). In lexicography, the tool we have used until
now – namely tuple-organised XML – is like Roman numerals, it makes certain
things unnecessarily difficult for humans, while NVH is the tool that makes
many things seem simple.

4 Towards a lexicographic data language

78

BLOCK III: DATA MODELLING

79

80

5 Data models in lexicography
The previous block of chapters dealt with data languages such as XML and
NVH: a relatively low level of representation. While the formal notation you
choose for representing the contents of a dictionary matters, what matters
even more is what you do with it: how you choose to model the various
phenomena that occur in dictionaries. That is what the next block of chapters
will be about: about modelling lexicographic content at a higher level of
abstraction, independently of any notation.

5.1 Introduction: what are we modelling for?

When lexicography started digitising itself in the 1990s, the typical approach
to data modelling was text markup: to demarcate where e.g. one sense ends
and another begins. The purpose was to provide a level of abstraction above
formatting, so that we can decide later whether headwords will be in bold or
not, whether senses will be numbered or not, and so on. But in recent years
we have been seeing the emergence of data models which are more ambitious
than that: data models which are designed to help with data management
(e.g. by guaranteeing that cross-references will always be valid), and data
models which make dictionaries accessible for alternative uses than just
showing entries to humans, such as various NLP tasks. This can be seen as
a sign of maturity in the industry, as a step up from the relatively shallow,
document-oriented digitisation of the 1990s towards a more deeply digitised,
data-centric lexicography of the future.

5.2 Data-modelling standards in lexicography

This section provides an overview of the data modelling standards that are
well known and/or widely used in lexicography today.

5.2.1 TEI Lex-0

The ‘Dictionaries’ chapter of Guidelines of the Text Encoding Initiative (TEI
Consortium 2007) is a popular XML-based encoding scheme for dictionaries,

81

especially for retro-digitised ones. TEI Lex-0 (DARIAH 2021) is a customised
version of the guidelines which imposes several additional constraints on it,
in order to guarantee interoperability between dictionaries. TEI Lex-0 is being
developed by the DARIAH Working Group on Lexical Resources and, at the
time of writing, is at version 0.9.3.

TEI Lex-0 approaches dictionary modelling from a text-encoding perspective.
It provides a rich vocabulary of XML elements for marking up every
imaginable type of lexicographic content, and a permissive schema for
nesting the elements inside each other into a multi-level tree structure. Even
complex phenomena such as hierarchies of subsenses and subentries are easy
to model on TEI Lex-0: for example, a subentry is represented by an <entry>

element embedded (almost) anywhere inside another <entry> . Listing 5-1
shows what a mildly complex dictionary entry might look like in TEI Lex-0.
Notice how TEI Lex-0 represents the hierarchical arrangement of supersenses
and subsenses: it simply allows <sense> elements to embedded inside other
<sense> elements.

5 Data models in lexicography

82

Listing 5-1 sicher1 encoded in TEI-Lex0
<entry xml:id="sicher" xml:lang="de">
<form type="lemma">
<orth>sicher</orth>

</form>
<gramGrp>
<gram type="pos">adj</gram>

</gramGrp>
<sense xml:id="sicher_1">
<def>nicht von Gefahr bedroht, ungefährdet</def>
<cit type="example">
<quote>ein sicherer Weg</quote>

</cit>
<sense xml:id="sicher_2">
<form type="pattern">
<orth>vor etw|jmdm sicher sein</orth>

</form>
<cit type="example">
<quote>hier seid ihr vor der Entdeckung sicher</quote>

</cit>
<sense xml:id="sicher_3">
<form type="expression">
<orth>sicher ist sicher!</orth>

</form>
<def>lieber vorsichtig sein, lieber nichts riskieren!</def>
<cit type="example">
<quote>ich nehme den Regenschirm mit, sicher ist sicher!</quote>

</cit>
</sense>

</sense>
<sense xml:id="sicher_4">
<form type="expression">
<orth>Nummer Sicher</orth>

</form>
<def>Gefängnis</def>
<cit type="example">
<quote>in Nummer Sicher sitzen</quote>

</cit>
</sense>

</sense>
<sense xml:id="sicher_5">
<def>zuverlässig, verlässlich</def>

...
</sense>

</entry>

1 Adapted from https://www.dwds.de/wb/sicher

5 Data models in lexicography

83

https://www.dwds.de/wb/sicher

5.2.2 LMF

Lexical Markup Framework or LMF (ISO 24613-1:2024) is a data-modelling
standard published by ISO (International Organisation for Standardisation).
It is expressed in UML class diagrams and has several XML serialisations
(including one into TEI). LMF claims to have a dual machine-oriented/human-
oriented purpose: it consists of a “Core Model” for modelling machine-
oriented lexicons (defined in ISO 24613-1:2024), followed by “Machine-
Readable Dictionary Extensions” (defined in ISO 24613-2:2020) which are
intended to model human-oriented dictionaries (Francopoulo and George
2013, section 2.1).

In the Core Model, a lexicon is represented by a collection of entries (objects
of class LexicalEntry) which contain forms and senses. Forms (objects of class
Form) are various inflected forms of the entry’s “headword”, one of which can
be designated as the “headword” by turning it into an instance of a subclass
of Form called Lemma . Senses (objects of class Sense) are, unsurprisingly,
intended for capturing the headword’s meanings. The senses of an entry can
form a hierarchy of supersenses and subsenses: an LMF sense can contain
other senses. All these objects (entries, forms and senses) can be annotated
with properties from ISO’s Data Category Registry (ISO 12620-2:2022) such
as language codes and various grammatical labels: this is LMF’s way of
populating the entries-and-senses skeleton with actual content.

LMF’s Machine-Readable Dictionary Extensions are meant to add human-
readable details to the entries-and-senses skeleton. They do this by making
it possible to add three types of “child” objects to senses: Translatioo for
headword translations, Example for example sentences, and SubjectField for
subject-field labels (labels such as Biology or Mathematics).

5.2.3 Ontolex Lemon

Lexicon Model for Ontologies or Lemon (W3C 2016) is a scheme for representing
dictionaries as RDF graphs, using Semantic Web technologies. It was
developed as a W3C Community Specification (which means it is not an official

5 Data models in lexicography

84

W3C standard) by the Ontology-Lexica Community Group.1 The purpose of
Lemon is not primarily to encode dictionaries for human consumption: its
goal is to “provide linguistic grounding for ontologies”, to provide
information about how entities on the Semantic Web can be expressed in
natural language. In other words, Lemon is mainly for machine-readable
lexicons. That said, Lemon models information in a way which is similar
to how human-oriented dictionaries model it, it works with objects such as
entries and senses.

A lexicon in Lemon is a collection of objects of class ontolex:LexicalEntry .2

Each entry has a headword (represented by an object of class ontolex:Form

connected to the entry through a property called ontolex:canonicalForm) and
one or more senses (objects of class ontolex:LexicalSense). Entries and senses
can have other properties, such as part-of-speech labels, inflected forms,
definitions and example sentences, but classes for these are not provided
by Lemon: an implementor is free to choose any other vocabulary from the
Semantic Web for representing these, for example the LexInfo ontology3 for
grammatical labels or skos:example for attaching example sentences to
senses, or even build their own vocabulary.

The reason why Lemon provides only extremely sparse facilities for a human-
oriented lexicographic treatment of its headwords and senses is that Lemon is
not intended for human-oriented lexicography. Lemon is intended to provide
a mapping between its entries and senses on the one hand, and concepts
elsewhere on the Semantic Web on the other. This is done (mainly) through
a property called ontolex:reference which can link an ontolex:LexicalSense

to any other RDF resource. For this reason, some things simply cannot be
expressed in Lemon: entries cannot contain subentries, senses cannot be
arranged into a hierarchy of supersenses and subsenses, and it is impossible
to treat e.g. a noun reading and a verb reading of the same headword within
the same entry (e.g. walk as a noun and as a verb) – such structural features,

1
https://www.w3.org/community/ontolex/

2 The prefix ontolex: stands for the namespace http://www.w3.org/ns/lemon/

ontolex# .
3
http://lexinfo.net/

5 Data models in lexicography

85

https://www.w3.org/community/ontolex/
http://lexinfo.net/

while sometimes useful for human dictionary users, are a distraction for most
machine purposes, so it is no wonder that Lemon disallows them.

That said, in 2019 Lemon was supplemented by a Lexicography Module (W3C
2019), yet another Community Specification which brings into Lemon some
features for modelling human-oriented dictionaries. Its main tool for doing
that is a class called lexicog:LexicographicComponent .1 Objects of this class
can be arranged into a parent-child hierarchy (using the property
lexicog:subComponent) and can represent any “unit of content” found in a
dictionary, typically an entry, a sense, a subentry or a subsense. What each
lexicog:LexicographicComponent object actually represents is determined by
the Lemon object it is linked to through its lexicog:describes property:
typically an ontolex:LexicalEntry or an ontolex:LexicalSense . This
mechanism makes it possible, for example, to reorganise the senses of an
entry into a hierarchy, or to virtually “insert” a entry into another entry as a
subetry.

The fact that this functionality was only added to Lemon as an optional
module means that, to model a human-oriented dictionary in Lemon, each
entry and each sense needs to be represented twice: once as an
ontolex:LexicalEntry or ontolex:LexicalSense , and then again as a
lexicog:LexicographicComponent . Lemon and its Lexicography Module
basically provide a two-step mechanism for modelling a dictionary: first,
Lemon represents it as a machine-oriented resource, then the Lexicography
Module restructures it into a (more or less) human-oriented dictionary. The
result is de facto two parallel models in one: a machine-oriented one and a
human-oriented one, with mappings between them.

5.2.4 DMLex

The Data Model for Lexicography or DMLex (OASIS 2024) is being developed
by the Lexicographic Infrastructure Data Model and API (LEXIDMA)2 technical
committee of OASIS, an organisation which oversees the development of open

1 The prefix lexicog: stands for the namespace http://www.w3.org/ns/lemon/

lexicog# .
2
https://www.oasis-open.org/committees/lexidma/

5 Data models in lexicography

86

https://www.oasis-open.org/committees/lexidma/

standards in the IT industry. LEXIDMA originated from the EU-funded ELEXIS
project.1 The author of this thesis is the chair of LEXIDMA and a co-author of
DMLex.

DMLex uses a classical tree structure for the basic entries-and-senses skeleton
of dictionary entries, and relations for everything else. It offers a rich
vocabulary of types for lexicographic content, derived from the ELEXIS
Common Vocabulary (Tiberius et al. 2021) which offers more detail and more
nuance than LMF and Lemon, approaching somewhat the variety offered by
TEI Lex-0. Like LMF and Lemon, DMLex strives for machine/human duality:
dictionaries modelled in DMLex are meant to be easily processable by
machines – without distractions such as hierarchical subsenses or multiple
headwords per entry – but renderable for human viewing with all of those
things: with hierarchical subsenses and with multiple headwords per entry.

Last but not least, DMLex is independent of any particular formalism: it is
high-level conceptual model with serialisations into XML, JSON, NVH, a
relational database and an RDF graph. More details about DMLex will be given
in Chapter 7.

5.2.5 Private schemas

In addition to the standards mentioned above, it is common practice for
dictionary projects to be based on private, “home-baked” schemas. These
tend to be expressed in XML and purely tree structured, in the fashion of
TEI. A well-known example is DANTE2 (Convery et al. 2010, Rundell and Atkins
2011) which has later come to be used (with alterations) as the schema for the
New English–Irish Dictionary.3

Private schemas tend to have a rich vocabulary of content types (XML
elements), far exceeding the sparseness of what LMF and Lemon offer,
approaching the variety offered by TEI Lex-0. Unlike TEI Lex-0, they tend to
have stricter rules for which elements can be included inside other elements

1
https://elex.is/

2
https://www.dantedictionary.com/

3
https://www.focloir.ie/

5 Data models in lexicography

87

https://elex.is/
https://www.dantedictionary.com/
https://www.focloir.ie/

as children – although these restrictions tend to become more relaxed over
the lifetime of the project.

Private schemas are a lot more prevalent in the lexicographic industry than
any of the standards mentioned above.1 This means that XML – and the
tree-structured design patterns that come with it – are really the industry
standard today. Models which attempt to innovate and to model things that
are difficult to model in tree structures – including LMF, Lemon and especially
DMLex – have not found wide industrial adoption yet.

5.3 Design patterns in lexicography

Almost all the data models agree that the basic entries-and-senses hierarchy
of an entry should be modelled as a tree structure, which is easily
representable in every formalism including XML. A tree structure seems like a
perfectly uncontroversial design pattern for this, with no obvious alternatives
and no trade-offs.

There is, however, some variation in how other, more complex phenomena
are modelled. The rest of this block will be mainly about them. Chapter 6
will bring a thorough analysis of how recursive hierarchies of subsenses and
subentries are modelled in lexicography and will propose an alternative,
recursion-free design pattern which has been included in DMLex. Chapter 7
will then zoom in on DMLex and explain how it approaches other complex
phenomena: how DMLex models entry-to-entry cross-references, how it
models linguistic variation (such as variant spellings of a headword), how it
deals with multi-word expressions, and others.

1 From the 70+ machine-readable dictionaries supplied by ELEXIS project partners
and observers during the life-time of the project, “most” were in “custom XML”
(Tiberius et al. 2022, section 5).

5 Data models in lexicography

88

6 Avoiding recursion in the representation
of subsenses and subentries
Recursion, and recursion-like design patterns, are used in the entry schemas
of dictionaries to model subsenses and subentries. Recursion occurs when
elements of a given type, such as sense , are allowed to contain elements of
the same or similar type, such as sense or subsense . This chapter argues
that recursion unnecessarily increases the processing complexity of entries,
making dictionaries less easily processable by machines. The chapter will
show how entry schemas can be simplified by re-engineering subsenses and
subentries as relations such that we only have flat lists of senses and entries,
with optional is-subsense-of and is-subentry-of relations between them. This
design pattern losslessly records the same information as recursion
(including – importantly – the listing order of items inside an entry) but
decreases the complexity of the entry structure and makes dictionary entries
more easily machine-processable.

6.1 Introduction

This section will introduce the concept of recursion in dictionary schemas
and will set it in the wider context of dictionary encoding.

6.1.1 What is a dictionary schema

On a typical dictionary project, entries are encoded in XML (or some other
formal notation), while the structure of the entries is controlled by a schema.
A schema is a document which prescribes that, for example, each entry must
begin with an entry element, that this element must contain exactly one
headword element followed by one or more sense elements, that each sense

element must contain zero or one definition elements followed by zero or
more translation elements, and so on. Schemas are usually expressed in
machine-readable form such as DTD (Document Type Definition) and are used
during the dictionary production process to guide human lexicographers in
producing structurally correct entries.

89

Essentially, an entry schema defines two things: types and embedding
constraints.

Types. A schema defines the existence of certain types of elements, such as
sense and definition . Each element in each entry must be an instance of
one such type.

Embedding constraints. A schema defines which elements can be contained
or embedded inside which other elements, based on their types. An
embedding constraint consists of three facts:

6.1.2 Modelling dictionary entries as tree structures

The embedding of elements inside other elements creates a hierarchy of
parent and child elements. A parent element contains zero, one or more
child elements, and each child element can in turn be the parent element for
further child elements. When such a hierarchy is encoded in XML, it becomes
a formalisation of a mental model in which a dictionary entry is imagined as
a tree. Modelling dictionary entries as tree structures has a long history in
lexicography which pre-dates digitisation; a summary of this way of thinking
is Wiegand (1989). When XML appeared on the scene in the 1990s, it became
widely adopted for dictionary encoding because XML fits the tree-structured
mental model nicely: for early thinking in the XML encoding of dictionaries
see Ide et al. (2000) and Erjavec et al. (2000).

The fact that an embedding is allowed to occur, for example that an
instance of definition is allowed to be embedded inside an instance of
sense .

▪

The arity of the embedding, prescribing how many instances are
allowed be embedded, for example zero or one definition inside a
sense , one or more sense inside an entry .

▪

The listing order of the embedded elements, for example headword

first and sense afterwards (and not the other way around) inside an
entry .

▪

6 Avoiding recursion in the representation of subsenses and subentries

90

Most of the phenomena that occur in dictionaries lend themselves easily
to being modelled as tree-structured hierarchies of parents and children.
Indeed, the entire ‘skeleton’ of a typical dictionary entry, comprising
headwords, senses, definitions and so on, is very obviously a tree. For such
things, XML (or indeed any other tree-structured serialisation language
including JSON, YAML and NVH) is a good and perfectly appropriate encoding
formalism.

On the other hand, some phenomena such as cross-references (from one
entry to another) are known to be difficult to implement in the tree-structure
paradigm because, in a way, they ‘reach out’ of the tree and give rise to
relations other than parent-child. To implement such relations in a dictionary
writing system, some additional programming on top of the tree structure is
usually required to enforce consistency (to avoid ‘dangling’ cross-references,
that is, cross-references which go nowhere). This occasionally inspires
implementors to abandon the tree-structure model completely and to
‘reimagine’ the dictionary as a network or graph where relations other than
parent-child are allowed to exist and where any element can be connected
to any number of other elements, not just to its parent. An example of such
an implementation is Maks et al. (2009). For a broader discussion of graphs
versus trees in dictionary encoding see Měchura (2016).

So, in dictionary encoding, we have phenomena which can be modelled fully
and losslessly by tree structures, and phenomena which cannot and for which
a graph structure is more appropriate. In this chapter we are going to
investigate something which is halfway between these two positions: the
phenomenon of recursive embedding where there are senses inside senses or
entries inside entries. These phenomena can be encoded in a tree-structure,
so it is obviously not in the same category as cross-references discussed
above. But the recursivity of the schema does cause processing complications,
as we will discuss in the rest of this chapter.

6.1.3 Causes and types of recursion in dictionary schemas

One thing we often see in dictionary schemas is that they allow some form
of recursive embedding, in other words, containing elements of one type
inside elements of the same or similar type. Typical examples are subsensing

6 Avoiding recursion in the representation of subsenses and subentries

91

(a sense contains other, more specialised senses) and subentrying (such as
when the entry for black hole is a subentry somewhere inside the entry for
hole).

To allow recursive embedding in an entry schema is easy: one needs to design
the schema in such a way that instances of – for example – sense are allowed
to contain other instances of sense . When recursion is defined in this way,
it can go on indefinitely: there is nothing stopping an embedded sense from
containing yet more senses, and so on. In practice this potential is almost
never exploited deeper than two or three levels, but the schema does allow it,
at least theoretically.

Many schema designers find the prospect of potentially never-ending
recursion worrying. So, another popular option, if one wants to allow
recursive embedding in a schema, is something we might call soft recursion.
In soft recursion, the schema defines two types such as sense and subsense

and prescribes that instances of sense are allowed to contain instances of
subsense , but instances of subsense are not allowed to contain any further
senses or subsenses. Apart from this, the types sense and subsense have the
same or similar content models: they contain definitions, example sentences
and so on. This is, strictly speaking, not recursion in the algorithmic sense,
but it is similar to recursion, as it achieves the same effect, only with the
guarantee of never running off beyond two levels of embedding.

In the rest of this chapter we will discuss how both types of recursion cause
unnecessary complexity in dictionary schemas, making entries less easily
processable by machines. The following section investigates the role of
recursion in subsensing, and the next section after that will look at the role of
recursion in subentrying.

6.2 Subsensing

This section looks at the practice of subsensing (= embedding senses inside
other senses) in dictionary schemas. Listing 6-1 shows an NVH example of
an entry with subsensing: notice how one of the sense elements contains
other sense elements. In this section we will analyse how dictionary schemas

6 Avoiding recursion in the representation of subsenses and subentries

92

usually enable subsensing by allowing recursion, and we will make an
alternative proposal for encoding subsensing without recursion.

Listing 6-1 A dictionary entry with subsensing1

entry:
headword: work
pos: noun
sense:
definition: Activity involving effort...
example: he was tired after a day's work
sense:
definition: Activity as a means of earning income; employment.
example: I'm still looking for work

sense:
definition: The place where one is employed.
example: I was returning home from work on a packed subway

sense:
definition: The period of time one spends in paid employment.
example: he was going to the theatre after work

sense:
definition: A job.
label: West Indian
label: count noun
example: I decided to get a work

sense:
definition: A task or tasks to be undertaken.
...

6.2.1 What are subsenses for?

Why do lexicographers sometimes decide to organise the senses of an entry
into a hierarchical list of senses and subsenses, instead of a flat list of senses?
Broadly, there are two kinds of motivation.

For modelling sense relations. Deciding how to order and organise
the senses inside an entry is a classical problem (or challenge) in
lexicography. According to Kipfer (1983), an early writer on the subject,
this is ‘one of the most important decisions facing lexicographers’. Three
broad strategies exist: (1) a chronological or historical ordering where
senses are ordered according to how new or old they are in the language,
(2) a usage-based or frequency-based ordering where most commonly
used senses are listed first, and (3) something called ‘logical’ or

▪

1 Adapted from https://www.lexico.com/definition/work

6 Avoiding recursion in the representation of subsenses and subentries

93

https://www.lexico.com/definition/work

These two motivations (modelling sense relations and providing a
navigational tool) show that the presence of subsenses in dictionaries is –

‘analytical’ ordering where senses are ordered and grouped according to
how they are related to one another.

The purpose of the third type, the logical/analytical ordering, is to
represent variations in semantic distance when certain senses of a
polysemous headword are closely related (as often happens when it is an
instance of regular polysemy – Apresjan 1974) while other senses of the
same headword may be semantically more distant. The goal is to create
a dictionary entry which ‘flows’ (can be read) as a coherent text, not just
as a listing of mutually independent bullet points (Lew 2013, page 293).
This approach typically implies a multilevel hierarchy of senses – ‘tiered
senses’ according to Atkins and Rundell (2008, section 7.3.2) – where
subsenses are allowed to be nested under a main sense. Entries that
follow this strategy usually consist of a few broad senses, each of which
contains a number of more detailed senses which are specialisations or
metaphorical extensions of the main sense.

For navigating large entries. When an entry contains so many senses
that skimming through all of them at once is cognitively too demanding
for the human user, the solution is to augment the entry with
navigational aids (Lew 2013, page 295). Common navigational aids
intended to help users locate the relevant sense in long polysemous
entries include menus at the beginnings of entries (Atkins and Rundell
2008, section 7.2.1.3) and ‘guidewords’ (also called signposts, indicators
or mini-definitions) at the beginnings of senses (Atkins and Rundell 2008,
section 7.2.5).

A hierarchical ordering of senses can also be understood as a
navigational aid, similar to the hierarchical taxonomy of subject fields
in a library catalogue or the hierarchical arrangement of topics in old-
style internet directories such as Yahoo: the idea is that the user can
iteratively ‘zoom in’ on the sense that interests him or her by moving
from a manageable number of general top-level senses to more
specialised senses deeper down the hierarchy.

▪

6 Avoiding recursion in the representation of subsenses and subentries

94

at least sometimes – well-motivated: the motivation is to meet the human
user’s information needs. The mission of this chapter is not to argue against
the existence of subsenses. Rather, this chapter argues against how subsenses
are usually represented in machine-readable dictionaries, which is through
recursion, and proposes a different, simpler, method of representing
subsenses.

6.2.2 What is wrong with recursive subsenses?

Dictionary schemas often implement subsensing either by defining a type
(sense) and allowing recursion on it, or by defining two types (sense and
subsense) and allowing soft recursion on them. Either way, we end up with
dictionary entries in which the senses are not a flat list but a hierarchy.

Processing hierarchies computationally is more difficult than processing flat
lists. In a hierarchy, the same kind of information (definitions, example
sentences etc.) ends up being located at different depths inside the entry
(starting from whatever the top-level element is) and possibly under parents
of different names (sense or subsense). This is a distracting complication
for digital agents (= software tools which process dictionary entries) such as
dictionary writing systems or programs that extract data from dictionaries.
The task the tool is given to do is usually complex enough in its own right, so it
is no help if the recursive entry structure is making things even more difficult.
From the perspective of someone who writes software tools for processing
dictionary entries, it would be more convenient if each entry had only a flat
list of senses with no embedding.

We have said that subsenses exist in order to satisfy users’ needs: telling the
user about sense relations and empowering the user to navigate long entries.
But satisfying these needs through recursive data structures is an overly
complicated solution. We are now going to present a technically simpler
method which uses only a flat list of senses, without embedding.

6.2.3 The proposal

The method proposed here for representing subsenses is based on a simple
idea: the fact that one sense is a subsense of another sense does not need

6 Avoiding recursion in the representation of subsenses and subentries

95

to be encoded by physically containing the one inside the other. The senses
can be encoded as same-level siblings, and we can express the sense-subsense
relationship between them by encoding it as a relation. To get there, the
following changes need to be made:

The result is shown in Listing 6-2. The identifiers created in step 1 begin with
the hash character (e.g. #work_noun_1). Notice how the list of senses is flat, but
the first sense contains placeholders with instructions for inserting subsenses
there.

The senses and subsenses are now encoded as a flat list, while their
hierarchical arrangement needs to be inferred by following the chains of
references between identifiers (#work_noun_1 etc). Notice that we have not lost
any information in this transformation. We are still representing the fact that
a sense is a subsense of another sense, but we are doing it differently, without
any form of recursion. Even the listing order of the subsenses is preserved in
this new representation.

To show such an entry to human users, a software tool must first reconstruct
the sense hierarchy from the ID-to-ID links, producing something like Listing
6-1 again, and format that for display to the user. An interesting side-effect
is that reconstructing the hierarchy is optional: the senses can validly be
displayed as a flat list too and the entry still “makes senses”.

The list of senses is flattened, so that there is only a flat list of senses,
with no hierarchy.

1.

Each sense is given a unique identifier (these can be generated
automatically by the dictionary writing system and do not have to visible
to the lexicographer).

2.

In every location where one sense is supposed to appear as a subsense,
we insert a placeholder instruction (hasSubsense) which says ‘take sense
so-and-so and insert it here as a subsense’.

3.

6 Avoiding recursion in the representation of subsenses and subentries

96

Listing 6-2 A dictionary entry where subsensing is treated as sense-to-sense
relations
entry:
headword: work
pos: noun
sense: #work_noun_1
definition: Mental or physical effort done in order to...
example: he was tired after a day's work
hasSubsense: #work_noun_2
hasSubsense: #work_noun_3
hasSubsense: #work_noun_4
hasSubsense: #work_noun_5

sense: #work_noun_2
definition: Activity as a means of earning income; employment.
example: I'm still looking for work

sense: #work_noun_3
definition: The place where one is employed.
example: I was returning home from work on a packed subway

sense: #work_noun_4
definition: The period of time one spends in paid employment.
example: he was going to the theatre after work

sense: #work_noun_5
definition: A job.
label: West Indian
label: count noun
example: I decided to get a work

sense: #work_noun_6
definition: A task or tasks to be undertaken.
...

Similarly, to present the entry to a lexicographer for editing, a software tool
must first reconstruct the sense hierarchy from the ID-to-ID links, producing
something like Listing 6-1, and then make it available for editing, for example
in a conventional XML editor. When the lexicographer is finished with the
entry, the tool must flatten the list of senses, give each sense an ID, indicate
the sense-to-sense relations with ID-to-ID links, and store this flattened
version.

In other words, the flattened version is an internal representation for
machine processing, while the ‘reconstructed’ unflattened version, with its
hierarchy of senses and subsenses, is one of the options for presentation to
humans. In software engineering terms, the unflattened version as in Listing
6-1 is the view model while the flattened version as in Listing 6-2 is the domain
model of a dictionary entry. It is possible to convert losslessly between the two

6 Avoiding recursion in the representation of subsenses and subentries

97

models. The unflattened model is more easily legible for humans while the
flattened model is more easily processable by machines.

6.2.4 Realistic example: sicher in DWDS

Before we conclude our discussion of subsensing and move on to subentrying,
let us look at a real-world example of an entry from a relatively modern,
recently retro-digitised dictionary. We will show on this example how a multi-
level hierarchy of senses, subsenses and ‘subsubsenses’ can be losslessly re-
represented as a more easily machine-readable flat list of senses with
relations between them, in accordance with our proposal.

The entry comes from a digitised version of Wörterbuch der deutschen
Gegenwartssprache, published online as part of Digitales Wörterbuch der
deutschen Sprache (DWDS). Some of the larger entries in this dictionary have
a very ‘branchy’ hierarchy of senses and subsenses which goes down to more
than two levels, and sicher is one of them. Only the first few senses from sicher
are shown in Listing 6-3.

Listing 6-3 sicher in DWDS1

entry:
headword: sicher
pos: adj
sense:
definition: nicht von Gefahr bedroht, ungefährdet
example: ein sicherer Weg
sense:
pattern: vor etw|jmdm sicher sein
example: hier seid ihr vor der Entdeckung sicher
sense:
expression: sicher ist sicher!
definition: lieber vorsichtig sein, lieber nichts riskieren!

example: ich nehme den Regenschirm mit, sicher ist sicher!
sense:
expression: Nummer Sicher
definition: Gefängnis
example: in Nummer Sicher sitzen

sense:
definition: zuverlässig, verlässlich
...

1 Adapted from https://www.dwds.de/wb/sicher

6 Avoiding recursion in the representation of subsenses and subentries

98

https://www.dwds.de/wb/sicher

If for the moment we ignore the fact that some of the subsenses are in fact
subentries (a topic we will return to in the following section), then this sense
hierarchy could be flattened as in Listing 6-4. We have ended up with an entry
which, to a computer programmer at least, looks more easily processable, as
there is only a flat list of senses, no hierarchy. It is now easier than before to
write a program or script to iterate over the senses, for example to extract
all definitions. The information about hierarchy is still there and can be used
if needed, but it is encoded in such a way that it can be ignored when not
needed.

Listing 6-4 sicher with flattened senses
entry:
headword: sicher
pos: adj
sense: #sicher_1
definition: nicht von Gefahr bedroht, ungefährdet
example: ein sicherer Weg
hasSubsense: #sicher_2
hasSubsense: #sicher_4

sense: #sicher_2
pattern: vor etw|jmdm sicher sein
example: hier seid ihr vor der Entdeckung sicher
hasSubsense: #sicher_3

sense: #sicher_3
expression: sicher ist sicher!
definition: lieber vorsichtig sein, lieber nichts riskieren!
example: ich nehme den Regenschirm mit, sicher ist sicher!

sense: #sicher_4
expression: Nummer Sicher
definition: Gefängnis
example: in Nummer Sicher sitzen

sense: #sicher_5
definition: zuverlässig, verlässlich
...

6.3 Subentrying

This section will deal with the phenomenon of subentrying where dictionary
authors put entire entries (or things that look like entire entries) inside other
entries. For the purposes of this chapter we will define subentry as any
element inside a dictionary entry which has its own headword. When a
subentry is present somewhere inside an entry, it overrides the entry’s
headword and provides its own.

6 Avoiding recursion in the representation of subsenses and subentries

99

6.3.1 What are subentries for?

Why do lexicographers sometimes decide to embed a subentry inside an
entry? Broadly, there are two kinds of motivation.

To place multi-word expressions inside a single-word entry. When
a multiword expression appears inside an entry headed by a single-
word headword, its appearance there may take many different forms.
One common practice is to make the multiword expression look like
an ordinary sense, with a definition and a usage example, and nothing
to distinguish it visually from other senses except the fact that it has
its own (multiword) headword. Another option is for the multiword
expressions to look like a ‘mini-entry’ located inside its host entry, with
its own list of one or more senses. A multiword expression can be
embedded inside one specific sense of its host entry, or it can be outside
the sense hierarchy altogether, in a separate box at the end of the entry.
The options are virtually endless: Atkins and Rundell (2008, page 54)
give a list of the most commonly used strategies. But regardless of how
it is presented, whenever we see an element inside an entry which is
headed by its own headword (even a multiword one), we can think of that
element as a subentry.

▪

To place secondary headwords and ‘run-ons’ inside the entry. A
secondary headword (Atkins and Rundell 2008, pages 492–94) is
(typically) a single-word expression which is morphologically related to
the main headword and which, in the lexicographer’s opinion, needs to
be briefly described or at least mentioned in the dictionary, but does
not deserve its own entry. An English example could be writing (as a
noun) under write (as a verb) or run (as a noun) under run (as a verb).
In other languages, secondary headwords that are sometimes seen in
dictionaries are gender variants (German Lehrerin ‘female teacher’ under
Lehrer ‘teacher’), aspectual variants (Czech přistávat ‘to be landing’ under
přistát ‘to have landed’) and others. Regardless of how such an element is
presented or formatted inside the entry, we can think of it as a subentry:
as something which, even though it is not an entry, has its own
headword.

▪

6 Avoiding recursion in the representation of subsenses and subentries

100

Every time a lexicographer decides to treat something as a subentry inside
another entry (as opposed to treating it as its own independent entry), that
decision may be motivated: the lexicographer may have predicted that the
user will benefit from seeing the subentry embedded in the host entry in its
entirety, without having to navigate to a separate entry somewhere else in the
dictionary. Therefore, the purpose of this chapter is not to argue against the
existence of subentries in dictionaries. Instead, this chapter argues against
how subentries are usually represented in machine-readable dictionaries,
which is through recursion, and proposes an alternative method.

6.3.2 Headword overriding

To understand why representing subsenses through recursion is problematic,
it is necessary to understand the concept of headword overriding first.
Normally, a dictionary entry is headed by a headword, and then the rest of
the entry describes that headword. This seems logical and regular. But this
logical and regular pattern is sometimes broken by things which override the
headword.

A typical cause of overriding is the presence of a multiword subentry inside
the entry. Its presence somewhere in the body of the entry changes the object
of description: from that point onwards, we are no longer describing the
headword we started with, we are now describing the multiword expression
instead. In Listing 6-5, when we enter sense number 2, the object of
description changes from the headword sicher to the multiword expression
sicher ist sicher! and then, as we leave sense number 2, it changes back to the
headword sicher.

Another frequent cause of overriding is when the object of description
changes from the headword to a secondary headword (such as an inflected
form, a variant form or a capitalised form). Listing 6-6 shows how the object
of description changes from bible to the Bible as we enter sense number 1 and
then it changes back to bible as we leave the sense.

6 Avoiding recursion in the representation of subsenses and subentries

101

Listing 6-5 Extract from the entry for sicher in DWDS1

entry:
headword: sicher
pos: adj
sense:
definition: nicht von Gefahr bedroht, ungefährdet
example: ein sicherer Weg

sense:
expression: sicher ist sicher!
definition: lieber vorsichtig sein, lieber nichts riskieren!
example: ich nehme den Regenschirm mit, sicher ist sicher!

sense:
definition: zuverlässig, verlässlich
example: ein sicherer Tresor
...

Listing 6-6 The entry for bible in LDOCE2

entry:
headword: bible
pos: n
sense:
expression: the Bible
definition: the holy book of the Christian religion

sense:
label: informal
definition: the most useful and important book on a subject
example: It's the anatomy student's bible!

6.3.3 What is and what is not overriding

Not all entry-internal elements which can be headed by something are
necessarily overriding the headword. Consider the (changed) example from
DWDS in Listing 6-7.

Here, sense number 1 is an ordinary sense and sense number 3 is clearly an
example of overriding. But what about sense number 2? It is headed by the
grammatical pattern vor etw|jmdm sicher sein (‘to be safe from sth|sb’). Here
it is probably reasonable to argue that this sense element is describing (one
sense of) the headword sicher: the object of description has not changed. The
grammatical pattern is merely one of the properties of this sense of sicher that
are being communicated to the user.

1 Adapted from https://www.dwds.de/wb/sicher
2 Adapted from https://www.ldoceonline.com/dictionary/bible

6 Avoiding recursion in the representation of subsenses and subentries

102

https://www.dwds.de/wb/sicher
https://www.ldoceonline.com/dictionary/bible

Listing 6-7 Extract from the entry for sicher in DWDS1

entry:
headword: sicher
pos: adj
sense:
definition: nicht von Gefahr bedroht, ungefährdet
example: ein sicherer Weg

sense:
pattern: vor etw|jmdm sicher sein
example: hier seid ihr vor der Entdeckung sicher

sense:
expression: sicher ist sicher!
definition: lieber vorsichtig sein, lieber nichts riskieren!
example: ich nehme den Regenschirm mit, sicher ist sicher!

Another way to decide whether the head of an entry-internal element is or
is not a subentry is to ask yourself whether it is likely that a dictionary user
would search for it. Users might well input expressions such as the Bible or
sicher ist sicher into the search box of an online dictionary, but probably not a
grammatical pattern like ‘to be safe from sth|sb’.

Another clue that can tell us whether we are dealing with an overridden
headword or not is to ask whether it would be acceptable not to display the
subentry inside the entry, and to provide a clickable hyperlink instead. In that
hypothetical scenario, the user would be expected to click that hyperlink and
this would take him or her to another screen where the subentry would be
displayed. If this would be acceptable, then that is a clue that the subentry
can function as an independent entry in its own right, its ‘head’ can function
as a headword, and we are indeed dealing with an instance of headword
overriding.

Either way, what ultimately decides the question (whether something is a
subentry or not) is the intention of the lexicographer. In a well-designed
dictionary schema the answer will be in the names and types of the elements
used for encoding. In our examples here, a sense is a subentry if it has an
expression , otherwise it is an ordinary sense.

1 Adapted from https://www.dwds.de/wb/sicher

6 Avoiding recursion in the representation of subsenses and subentries

103

https://www.dwds.de/wb/sicher

6.3.4 What is wrong with overriding?

A human dictionary user, while he or she is skimming down a dictionary
entry, is able to recognise when the object of description has changed and
when it has changed back. Human dictionary users understand this easily
from the way the dictionary entry is formatted on their screen and from
their knowledge of the language. This requires almost no extra effort for the
human user.1

As a software engineer, however, when building a program which will process
the entries, having to deal with overriding (= with changes in what is being
described) is an unwelcome complication. Recognising when overriding has
occurred and when not requires some additional programming: the program
must know that when it has entered a sense which has an expression then
the object of description has changed to whatever the expression contains. It
must also remember the previous object of description and know that, when
it has left that particular sense, the object of description changes back.

So, even though headword overriding poses no problem for (skilled) human
dictionary users, it poses a real and existing complication for software and for
people writing it. IT professionals would find it easier (and themselves more
willing) to work with dictionary data if they could count on the fact that the
object of description will never change inside an entry – in other words, that
all senses inside one entry will be describing one and the same headword.
Sadly, many dictionaries in existence today do not meet this assumption.

6.3.5 How dictionary schemas enable overriding

In a typical dictionary schema that allows entry overriding, there is usually
an element somewhere in the schema which allows itself to be headed by
something, to have something that resembles a headword. Having a headword

1 Provided the human user is an experienced dictionary user and has what
lexicographic literature calls “dictionary skills”. That is not something that can be
assumed about everyone who ever opens a dictionary. It may well be that headword
overriding is a problem not just for machines but for some humans too.

6 Avoiding recursion in the representation of subsenses and subentries

104

is normally the privilege of entries, but the idea of headword overriding is
that some elements inside entries have this privilege too.

In some dictionary schemas, the elements that are allowed to override the
headword are ordinary senses. That is how it is in our two examples in Listings
6-6 and 6-7: the senses which act as ordinary senses and the senses which
act as subentries are instances of the same type (sense). What turns a sense
into a subentry is the presence of that one heading element (here named
expression). Other dictionary schemas have a dedicated type for the elements
that are allowed to override the headword, with a name such as subentry . All
of these situations qualify as soft recursion. Last but not least, it is possible
to enable headword overriding with proper (not soft) recursion, by allowing
instances of entry to contain other instances of entry , but this design pattern
is not common.

In any case, regardless of the names of the elements and regardless of
whether the recursion is soft or not, the problem is not caused by the
existence of subentries as such. The problem is caused by the fact that the
subentries are physically embedded inside other entries and that they
override headwords there. In other words, the problem is caused by
recursion.

6.3.6 The proposal

To get rid of recursion and to prevent headword overriding from happening,
we must remodel subentries as relations. The following changes need to be
made:

All entry-internal elements that override the headword (that is, all
subentries) are taken out of the entries and promoted to the status of
entries.

1.

Each entry is given a unique identifier (these can be generated
automatically by the dictionary writing system and can remain invisible
to the lexicographer).

2.

6 Avoiding recursion in the representation of subsenses and subentries

105

The result is shown in Listing 6-8. The identifiers created in step 1 begin with
the hash character (e.g. #the_bible). Notice how the list of entries is flat, there
are no subentries in the encoding. But subentries are still there implicitly, in
the placeholders with instructions for inserting them.

Listing 6-8 A dictionary entry where subentrying is treated as entry-to-entry
relations
entry: #bible
headword: bible
pos: n
hasSubentry: #the_bible
sense:
label: informal
definition: the most useful and important book on a subject
example: It's the anatomy student's bible!

entry: #the_bible
headword: the Bible
sense:
definition: the holy book of the Christian religion

Notice that we have not lost any information through the remodelling. We
are still encoding the fact that one entry is a subentry of another entry , we
are just doing it differently, without any form of recursion. Even the listing
order of the subentries is preserved, so the subentry for the Bible has not lost
its place as the first ‘sense’ of bible.

To show the entry for bible to end users, a software tool can – but does
not have to – first reconstruct the entry-subentry hierarchy from the ID-
to-ID links, producing something like Listing 6-6 again, and format that for
display to the user. The same can – but does not have to – be done when
presenting the entry for editing to human lexicographers. The opposite must
be done when saving the entry after editing: the composite entry needs to be
decomposed into individual entries and any occurrence of subentries must be
marked with placeholders (hasSubentry).

In every location where one entry is supposed to appear as a subentry, we
insert a special instruction which says ‘take entry so-and-so and insert it
here as a subentry’.

3.

6 Avoiding recursion in the representation of subsenses and subentries

106

The decomposed version is suitable as an internal representation for storage
and for machine processing because it does not use recursion and because
headword overriding is guaranteed not to occur in it. The ‘reconstructed’
composite version, with its hierarchy of entries and subentries, is one option
for presentation to humans. Once again, we see that the view model (the
composed version) and the domain model (the decomposed version) are two
sides of the same coin, with lossless conversion possible in both directions.

6.3.7 Realistic example: sicher in DWDS

For a more realistic example, let us return to the entry for sicher in DWDS. In
Listing 6-4 we left it with its subsenses flattened and remodelled as relations.
The only problem that remained with this entry is that senses 3 and 4 are
subentries: they have their own headwords (encoded as expression) which
override the headword of the main entry. We need to factor them out into
their own entries, and link them to their original locations through
hasSubentry relations. The result is in Listing 6-9.

Listing 6-9 sicher with decomposed subentries
entry:
headword: sicher
pos: adj
sense: #sicher_1
definition: nicht von Gefahr bedroht, ungefährdet
example: ein sicherer Weg
hasSubsense: #sicher_2
hasSubentry: #sicher_4

sense: #sicher_2
pattern: vor etw|jmdm sicher sein
example: hier seid ihr vor der Entdeckung sicher
hasSubentry: #sicher_3

sense: #sicher_5
definition: zuverlässig, verlässlich
...

entry: #sicher_3
headword: sicher ist sicher!
sense:
definition: lieber vorsichtig sein, lieber nichts riskieren!
example: ich nehme den Regenschirm mit, sicher ist sicher!

entry: #sicher_4
headword: Nummer Sicher
sense:
definition: Gefängnis
example: in Nummer Sicher sitzen

6 Avoiding recursion in the representation of subsenses and subentries

107

6.4 Conclusion

This chapter has made proposals for a relational remodelling of subsenses
and subentries in dictionary schemas: things that were previously modelled
as instances of recursive embedding are remodelled here as relations between
non-recursive objects. What is the significance of this change?

6.4.1 A new design pattern

The goal of this chapter has been to propose an alternative design pattern
for subsenses and subentries in machine-readable dictionaries. In software
engineering, a design pattern – a term made popular by Gamma et al. (1995)
– is an abstract and informal ‘template’ or ‘recipe’ for approaching a given
software engineering challenge. The most popular design pattern employed
for solving the challenge of subsenses and subentries today is recursive
embedding (of senses inside senses, etc.). We have argued that this design
pattern causes unnecessary complications further downstream and is
therefore undesirable, and we have proposed an alternative design pattern,
one based on treating subsenses and subentries as relations. We have shown
that this design pattern losslessly represents the same information but is less
complex, from a processing point of view.

A design pattern is not a complete data model: it is not something which
can model all kinds of data in a given domain, or something which can be
converted into computer code straight away. Consequently, we have not
proposed a complete data model for dictionaries here. We have, however,
shown how the recursion-free design pattern can be implemented in existing
tree-structured encoding schemas without having to re-engineer them
completely.

Should other things besides subsenses and subentries be re-engineered
completely into relations? There is some evidence that cross-references,
sense-to-sense links and other relationships which ‘reach out’ of the tree
structure would benefit from such a move – refer back to the discussion in
6.1.2. On the other hand, for the basic entries-and-senses skeleton, a tree
structure seems perfectly appropriate and re-engineering it into something

6 Avoiding recursion in the representation of subsenses and subentries

108

else would introduce unnecessary complications of its own. The ideal
conceptual model of a dictionaries is probably hybrid: half tree-structured,
half graph-structured.

6.4.2 Advantages and disadvantages

What do we gain and what do we lose when we transition from recursive
embedding to relations? When subsenses and subentries are encoded through
recursion (including soft recursion), they are encoded in a way which is easily
legible for humans but less easily processable by machines. When we
remodel subsenses and subentries into relations, then the balance is reverted:
the entries are now less easily legible for humans but more easily
processable by machines. As is often the case when recording information
on computers, we can do things either in a way which is human-readable, or
in a way which is easily processable by computers, but we cannot have both.

Until now, the trend in lexicography has been to resolve such trade-offs in
favour of human readability. Dictionaries were expected to be encoded in
a structure which is close to their eventual presentation on screen and on
paper. Showing the dictionary entry to a human user was the one and only
imaginable culmination of the entire lexicographic effort, it is the
lexicographic industry’s traditional use-case. Those who wanted to use
dictionaries for other use-cases, for example to extract data from them for an
NLP application or to link several dictionaries together, were forced to deal
with a complexity which, from their point of view, was unnecessary.

The proposal presented here resolves the trade-off the other way around,
in favour of machine processability. The data models end up being simpler
because there are fewer types in them (there is no need for types such as
subsense and expression). The entries themselves end up being encoded in
flat, non-recursive data structures where the same information can always be
found at the same depth and where there is no headword overriding. So, using
a dictionary for purposes other than showing them to humans has become
easier. On the other hand, because the encoding has become less legible for
humans, the dictionary now requires additional processing before it can be
shown to a human user (to unflatten and ‘reconstruct’ the hierarchies of
subsenses and subentries).

6 Avoiding recursion in the representation of subsenses and subentries

109

For any dictionary project with ambitions beyond the traditional
lexicographic use-case, the relational approach proposed here is the better
option: it widens the potential audience, the advantages outweigh the
disadvantages. A wider range of consumers are getting a chance to consume
the content. The barriers to entry are lower, dictionaries encoded like this
are now more easily understandable to IT professionals working not only
in lexicography but also in disciplines such as information retrieval, digital
humanities, computational linguistics, natural language processing and so
on. Through relational remodelling of recursive structures, we can bring
dictionaries to audiences outside the traditional consumers of lexicographic
content.

6 Avoiding recursion in the representation of subsenses and subentries

110

7 On the design of DMLex
DMLex (Data Model for Lexicography, OASIS 2024) was mentioned several times
in the previous chapters as one of the data modelling standards in
lexicography. But DMLex is special among its peers because it offers a
radically different approach to modelling many lexicographic phenomena
from other standards. It is now time to turn to DMLex in more detail.

7.1 A map of the DMLex specification

The DMLex specification is a long and complex document, the PDF version
is around 200 pages long. This is because the document actually contains
not one but several specifications. There is a specification of the data model
itself, and then there are five additional specifications of the data model’s
serialisations into XML, JSON, RDF, a relational database and NVH. The most
important sections in the specification are:

Section 3 defines DMLex Core for modelling simple monolingual
dictionaries. The Core is required: if an implementor wants to claim
conformance to DMLex, they must implement at least the Core.

▪

Section 4 defines a number of modules which extend the Core with
additional capabilities. The modules are optional: the implementor can
choose to implement each module if they need those capabilities. An
implementation can claim conformance to DMLex even if it does not
implement any modules. The modules are:

DMLex Crosslingual module in section 4.1 extends the Core to
model bilingual and multilingual dictionaries.

▪

DMLex Controlled Values Module in section 4.2 extends the Core
to represent inventories of look-up values to be used as part-of-
speech tags, usage label tags and others.

▪

DMLex Linking Module in section 4.3 allows the modelling of
various relations between entries, senses and other objects,
including semantic relations such as synonymy and antonymy and

▪

▪

111

presentational relations such as subentries and subsenses, both
within a single dictionary and across multiple dictionaries.

DMLex Annotation Module in section 4.4 allows the modelling of
inline markup on various objects such as example sentences,
including the modelling of collocations and corpus patterns.

▪

DMLex Etymology Module in section 4.5 allows the modelling of
etymological information in dictionaries.

▪

Section 5 defines serialisations of the data model.

Implementors are free to implement DMLex in any formalism they
choose, including formalisms not listed here. But if an implementor has
chosen to implement DMLex in one of the formalisms listed here, then
they are required to follow this specification in order to be able to claim
conformance to DMLex.

XML serialisation in section 5.1▪

JSON serialisation in section 5.2▪

Relational database serialisation in section 5.3▪

RDF serialisation in section 5.4▪

▪

Appendix A provides informative material which is not required.

A collection of examples in section A.1 which can be read as a “how-
to” guide to modelling various phenomena in DMLex.

▪

An NVH serialisation of DMLex in section A.2. Unlike the other
serialisations, which are normative, the NVH serialisation is
informative and therefore only a recommendation.

▪

▪

7 On the design of DMLex

112

7.2 The thinking behind DMLex

The institutional background of DMLex has been described in Section 5.2.5.
Let us only repeat here that DMLex is being created by LEXIDMA (Lexicographic
Infrastructure Data Model and API), an OASIS technical committee. The author
of this thesis is the chair of LEXIDMA, and so it is not surprising that DMLex
is shaped by the author’s ideas about how data should be modelled in
lexicography. This section will outline what those ideas are, and the next
section after it will show how DMLex approaches the modelling of specific
phenomena.

7.2.1 Does the world need another lexicographic data
standard?

Practically all existing data standards in lexicography (reviewed in Section
5.2), and practically all private schemas typically used on dictionary projects,
have one thing in common: they model dictionary entries as tree structures. A
tree structure is the metamodel behind XML: every XML document is basically
a tree where elements branch into other elements which branch into even
more elements. At first sight, this seems like a good fit for dictionary entries
with their hierarchical arrangement of entries which contain senses which
contain definitions and so on. But tree structures have disadvantages too.
For example, they are inefficient at representing cross-references between
entries (where the requirement is to prevent invalid cross-references to non-
existent targets). Graph structures (such as relational databases and RDF
graphs) are more efficient at modelling this. Another limitation of tree
structures is that they force lexicographers into having to make
uncomfortable decisions about the placement of multi-word subentries: is it
really necessary to decide whether black hole goes under black or hole? Can
it not be under both? This is not possible in a tree structure (at least not
easily, not out-of-the-box); graph structures better suited to modelling such
situations.

The goal of LEXIDMA is to depart from the limitations of tree-structured data
models and to propose a new approach to modelling dictionaries: one which
is a hybrid between tree structures for the basic entries-and-senses hierarchy,

7 On the design of DMLex

113

and graph structures for everything else. One way to understand DMLex is as
a catalog of design patterns which dictionary designer could take inspiration
from if, for example, they are building a dictionary writing system and if
their ambition is to handle the more complex phenomena – cross-references,
multi-word subentries and similar – in a more intelligent way than before.

7.2.2 What is a data model?

Practitioners in lexicography are familiar with dictionary entries being
encoded in XML, and with the internal structure of these entries being
constrained by an entry schema (on dictionary projects this is typically a
DTD). An entry schema is something which expresses the fact that, for
example, an entry is supposed to contain exactly one headword followed by a
list of one or more senses, that each sense is supposed to contain at most one
definition, and so on.

A data model is like a schema, but more abstract. An XML schema is very
closely coupled with the notation of XML. A data model, on the other hand,
is not coupled with any specific notation or formalism. A data model is one
level of abstraction above that: it is something which can be expressed in
many notations and formalisms. DMLex is such a data model. It defines the
structure of dictionaries (called ‘lexicographic resources’ in DMLex) in a way
which can be “serialised” into many different formalisms. The DMLex
standard comes with serialisations of itself into XML, into JSON, into a
relational database, into an RDF graph, and last but not least into NVH.

7.2.3 What kind of data model is DMLex?

Most literature on data modelling recognises several levels of data modelling
depending on how far removed it is from an actual implementation (here we
follow Halpin and Morgan 2008, section 2.1).

The highest level is a conceptual model whose purpose is not to be
straightforwardly implementable but to describe the domain in concepts
human subject-area experts can understand: it is designed for clear
communication about the domain between humans. Examples of
frameworks for conceptual modelling are Entity Relationship (ER)

▪

7 On the design of DMLex

114

7.2.4 The metamodel behind DMLex

Every conceptual data model assumes a certain metamodel, a collection of
axiomatic primitives the model is composed of. For example in Entity
Relationship (ER) diagrams, each model consists of three kinds of objects:
entities, relationships and attributes.2 UML class diagrams analyse everything
in terms of classes which encapsulate data (attributes) and behaviour
(operations). Object-Role Modelling (ORM) “views the world in terms of
objects playing roles in relationships” (Halpin and Morgan 2008 page 9). And
DMLex?

diagrams, UML class diagrams, and Object-Role Modelling (ORM). The
DMLex Core and all its modules are at this level: they are a conceptual
model.

The middle level is a logical model whose purpose is to be easily
implementable in a given type of environment. For example, if the
intended implementation is a relational database, then the logical model
is expressed in terms of tables, their columns and constraints on them
including primary keys and foreign keys. Or, if the intended
implementation is XML, then the logical model is expressed in terms
of the XML elements that are allowed to exist, the child elements they
are allowed to have, and so on. The serialisations of DMLex into XML,
JSON, relational database, RDF and NVH are at this level: they are logical
models.

▪

The lowest level is a physical model, a model which is inherent in an
actual, tangible, working implementation, such as a Microsoft SQL Server
database or an XML Schema. Such things are called validation artefacts in
OASIS parlance and DMLex does provide some of those too, such as an
XML Schema and a SHACL1 model.

▪

1 SHACL (Shapes Constraint Language) is a language for expressing constraints on an
RDF graph.
2 Ignoring advanced ER constructs such as supertypes/subtypes and aggregation
(Teorey et al. 2011, pages 25–32).

7 On the design of DMLex

115

DMLex sees each dictionary as a collection of objects of certain types such
as entry , sense , definition – DMLex defines which types exist. In diagrams
in this chapter, the type of each object is given in a shaded heading at the
top (sometimes at the bottom) of the box. The rest of the box contains the
object’s properties: DMLex defines which properties an object can have based
on its type, and what their arities are (at least one, one or more, etc.). A
property has a name (such as headword , definition , listingOrder) and a value.
In diagrams, the property’s name comes before the colon and the value after
it, such as headword: colour . The value of a property can be either literal,
typically a short string of text or a number, or a reference to another object. In
diagrams, references are indicated as arrows which point from the property
to the object the property refers to.

A more formal explanation of the metamodel behind DMLex can be found in
section 1.3 of the DMLex specification.

7.2.5 Relations, relations everywhere

Most of the object types defined by DMLex are straightforward equivalents of
the kinds of content that have existed in dictionaries for centuries – entry ,
sense , definition and so on – and their instances refer to one another in
a way which resembles a tree structure. There is one object type, however,
which will seem unfamiliar to lexicographers: relation . DMLex uses relation

objects to represent things that are difficult to represent satisfactorily in a
tree structure, such as cross-references, and for things that are representable
in a tree structure but the representations would be more complex than
necessary, such as subsenses and subentries.

Each relation object has a property named type and this encodes what kind
of relations it is: a synonymy relation, a relation between spelling variants,
a broader-narrower relation, and so on. Every DMLex implementor is free to
define the relation types that exist in their dictionary and how their software
is supposed to handle them (for example when showing entries to humans).
Then, each relation object has at least two members or, more accurately,
refers to at least two member objects. Each member object contains a reference
(in its ref property) to something in the same dictionary such as an entry or

7 On the design of DMLex

116

a sense, and optionally another property named role which specifies the role
of this member in the relation: for example, in a broader-narrower relation,
the members’ role properties indicate which is the broader and which is the
narrow. The implementor is free to define which roles exist for which relation
types.

This is the mechanics DMLex makes available to implementors for
representing relations between entries and/or senses. The rest of this chapter
shows many example of how DMLex makes use of relations for various
purposes.

7.3 How DMLex models selected phenomena

The rest of this chapter will be a gallery of how DMLex represents various
phenomena that arise when planning the structure of a dictionary. The
DMLex specification is a very long document and it is not possible to show
everything in this thesis, but the phenomena chosen for demonstration here
will hopefully suffice to give the reader an idea of how DMLex works. In each
subsection, I will show the abstract structure using diagrams with boxes and
lines between them. Each such diagram can be serialized into XML, JSON,
NVH, a relational database and an RDF graph – DMLex defines how, but I will
not be showing those serializations here, for the same reason of keeping the
thesis within a reasonable length.

7.3.1 The basics: entries and senses

How does DMLex represent the basic skeleton of dictionary entries as things
that are headed by headwords and then subdivided into senses? This is the
only area where DMLex is relatively conservative and models this as a tree
structure. Figure 7-1 shows a simple dictionary entry when viewed by a
human user and Figure 7-2 shows how the same entry would be modelled in
DMLex.

7 On the design of DMLex

117

Figure 7-1 A simple dictionary entry rendered for human viewers

Figure 7-2 A simple dictionary entry modelled in DMLex

DMLex can be used for representing monolingual dictionaries like above,
but it can also represent bilingual dictionaries like in Figures 7-3 and 7-4.
Last but not least, DMLex can represent multilingual dictionaries: those are
dictionaries which have one source language and multiple target languages.

7 On the design of DMLex

118

Figure 7-3 A simple bilingual entry

Figure 7-4 A simple bilingual entry modelled in DMLex

7.3.2 Cross-references

One very obvious use for DMLex’s relation objects is modelling cross-
references from entries to other entries. In classical XML-based lexicography,
a cross-reference is similar to a hyperlink on the web: it is something which
can be navigated, typically by clicking, to go from (some location in) one entry
to (some location in) another entry. The way a cross-reference is typically
represented in XML and other tree-structured models has two problems.
First, it does not guarantee that the target of the cross-reference actually

7 On the design of DMLex

119

exists. Second, it does not guarantee that the target contains a reciprocal
cross-reference in the opposite direction (if reciprocity is expected).

DMLex solves this problem by redefining cross-references as relations. A good
way to understand how this is different from the usual approach is to realise
that DMLex does not actually model the cross-references, it models the
relations that motivate them. The model states that there is a relation of a
certain type between two or more entries, and this relation may or may not be
shown to end-users as clickable cross-references, depending on the relation’s
type and on how the software is programmed to handle it.

Figure 7-5 shows an example. There are three entries for the headwords
lens, glasses and microscope, with one sense each. The model uses relations to
express the fact that there is a meronymy (part-whole) relation between lens
and glasses, and also between lens and microscope. Notice that there are two
relations of type meronymy : one between lens and glasses and another between
lens and microscope. Each has two members pointing to the relevant senses,
and each member has a role property to tell us which end of the relation it
represents, the part or the whole. Figure 7-6 shows how these relations can
be rendered as cross-references at the end of the appropriate senses of the
appropriate entries.

In addition to this, DMLex also gives the implementor all the mechanics
needed to define that meronymy is one of the valid relation types in this
dictionary, and that each relation of this type is supposed to have exactly two
members, one with role: part and one with role: whole , each referring to a
sense somewhere in the dictionary. These constraints are not shown in Figure
7-5 but can be expressed in DMLex using relationType and memberType objects.

7 On the design of DMLex

120

Figure 7-5 Entries for lens, glasses and microscope modelled in DMLex

Figure 7-6 Part-whole relations rendered as cross-references

7.3.3 Multiple headwords per entry

The usual situation in dictionaries is that each entry is headed by a single
headword. Occasionally, however, lexicographers produce entries headed by
several headwords or headword-like things at the same time. This happens

7 On the design of DMLex

121

when lexicographers are describing spelling variants (colour and color),
gender-paired nouns (German Lehrer ‘male teacher’ and Lehrerin ‘female
teacher’), aspect-paired verbs (Czech přistávat ‘to be landing’ and přistát ‘to
have landed’) and so on. Figute 7-5 illustrates what such an entry typically
looks like.

Figure 7-7 An entry with two headwords

DMLex, on other hand, is very strict about allowing only one headword per
entry. That does not mean, however, that things like colour and color cannot be
represented in DMLex. They can, but it has to be done differently. In DMLex,
a separate entry has to be created for each, and then the two entries must be
connected with an object of type relation . Figure 7-8 shows an example.

Figure 7-8 Entries for colour and color modelled in DMLex

7 On the design of DMLex

122

Notice how the entry for colour contains a lot of information (a part-of-speech
label and a sense) while the entry for color is sparse and skeletal: its purpose is
only to serve as a member in the relation object. DMLex allows entries with
no senses to exist for this purpose.

This is how the data is represented in DMLex internally, but it is not
necessarily what a human dictionary user would see on their screen (or on a
printed page). When a software agent (such as a website or a mobile app) is
about to show one of these entries to a human user, it can (if programmed
that way) follow through on all the relation objects and compose a “view”
of the entry from them. Figure 7-9 shows a suggestion of what the entries for
colour and color might look like when displayed on someone’s screen. Another
option is to merge the two entries into one “virtual” entry at display-time,
effectively producing the same output as in Figure 7-7. Either way, it is up to
the implementor to decide how their software will handle entries connected
through these relations.

Figure 7-9 Suggested display of colour and color

This may seem more complicated than necessary at first. Why have we, the
authors of DMLex, decided to model things this way instead of simply
allowing entries to have multiple headwords? The motivation for choosing
this design pattern is processing simplicity. Multi-headword entries, while
easily understandable for human dictionary users, cause inconvenient
complications for automated processing, for example when sorting entries
alphabetically or when matching dictionary entries to words in a text. These
computational tasks become simpler if we are able to guarantee that each
entry will always have exactly one headword. When designing DMLex, we
decided to favour processing simplicity, even if it means that rendering
entries for human viewers is now a more complex process.

7 On the design of DMLex

123

This decision also means that the data model is simpler than it would be
if it did allow multi-headwording: there are fewer object types and fewer
properties in the model. There is no need for separate object types and
properties for variant headwords, secondary headwords and similar:
everything is simply a headword (of its own entry). Also, one thing sometimes
seen in multi-headword entries (in dictionaries that allow them) is that each
co-headword almost has its own “mini-entry” describing its properties: labels
like ‘American spelling’ as well as other things. This complicates the data
model again because it becomes non-trivial to distinguish between
information which applies to only one of the co-headwords and information
which applies to the whole entry. DMLex eliminates these complications by
imposing the restriction that each entry must have exactly one headword. For
more complicated scenarios, multiple entries have to be created (even if some
of them will be “empty”) and connected through relation objects.

7.3.4 Placement of multi-word subentries

It is not unusual for dictionary entries to contain embedded subentries for
multi-word items. Figure 7-10 shows a dictionary entry headed by the
headword safe which contains a subentry headed by the multi-word
expression better safe than sorry.

Figure 7-10 An entry with a subentry

In Chapter 6 we discussed extensively how most dictionary schemas represent
subentries by allowing some form of recursion (such that entries are allowed
to contain other entries or entry-like things), and how this increases the
processing complexity of dictionaries. DMLex, on the oteher hand, does not
allow entries to be embedded inside entries. In DMLex, the multi-word

7 On the design of DMLex

124

subentry needs to be represented by its own entry which can be linked to its
“mother entry” through a relation object. Figure 7-11 shows what that looks
like when modelled in DMLex. The relation effectively says “please take the
entry for better safe than sorry and place it under the first sense of safe when
rendering the entry for safe for human end-users” – provided the software
agent has been programmed to understand relations of type: subentrying this
way.

Figure 7-11 An entry with a subentry modelled in DMLex

One highly beneficial consequence of this design pattern is that
lexicographers no longer have to decide whether a multiword subentry such
as better safe than sorry should be placed under safe or sorry. It can be under
both, we simply need to create two relations, one between better safe than sorry
and safe, and another between better safe than sorry and sorry.

Traditionally, deciding on the placement of multi-word items has been a
perennial problem in lexicography (Bogaards 1990). In many cases the ideal
solution would be to include a multiword subentry under several headwords,
but this is difficult to accommodate in a tree-structured data model. The only
way to include a multi-word unit in more than one entry is to duplicate it, but
this is an inelegant solution. Most importantly, it opens up the potential for
inconsistency: if a lexicographer makes a change to the subentry better safe

7 On the design of DMLex

125

than sorry under safe, there is no automatic way to propagate the change to
the other copy under sorry.

One method to deal with this, which as been becoming increasingly popular in
born-digital dictionaries, is to treat multi-word units as independent entries,
in effect promoting them to the same level as single-word headwords. This
approach ‘solves’ the problem of multiword item placement by deciding not
to place them anywhere, and that is also its drawback: it strips the
lexicographer of the ability to include a multiword item like better safe than
sorry under specific senses of the single-word entries. Instead, it delegates
the placement question to the website’s search algorithm, hoping that better
safe than sorry will indeed appear somewhere on the user’s screen when the
user has looked up safe or sorry. This is less than ideal: the lexicographic
function of better safe than sorry is not just to head its own (sub)entry but
also – a lexicographer might decide – to serve as an illustrative example in
specific senses of the words it is composed of. The lexicographer’s desire to
include it in a specific location inside one or more specific entries may be
well-motivated and, if it is, then the treat-multiwords-as-headwords method is
only a workaround.

What is needed is a mechanism for transclusion: a way for including a single
multiword item in several locations inside several entries, without having
to keep multiple copies of them in multiple locations. DMLex makes this
possible. DMLex treats multiword units as independent entries (like the treat-
multiwords-as-headwords method) but additionally provides the mechanism
of relation objects which can trigger software agents into rearranging
invididual entries into a hierarchy of entries and subentries at display-time.

7.3.5 Entry-internal sense relations

Another thing which is quite common in dictionaries is senses inside senses.
An example can be seen in Figure 7-12: the entry for colour has two top-level
senses, the first of which has two subsenses.

7 On the design of DMLex

126

Figure 7-12 An entry with subsenses

We have discussed in Chapter 6 how dictionary schemas typically represent
this by allowing recursion on senses. This is not allowed in DMLex. A DMLex
entry always contains only a flat list of senses but lexicographers have the
option to create relations between senses that can trigger software agents
into rearranging the senses into a hierarchy at display-time. Figure 7-13
shows what such a model looks like.

Figure 7-13 Subsenses modelled in DMLex

When lexicographers decide to arrange the senses of a word into a hierarchy
of supersenses and subsenses, this is usually motivated by the existence of

7 On the design of DMLex

127

a semantic relation between the supersense and the subsense. The subsense
is often a specialization of the supersense, or its metaphorical extension, or
something in that vein. The exact nature of these semantic relations is
typically not expressed explicitly in dictionaries, and only “hinted at”
through the existence of subsenses. In DMLex, however, it is possible to be
explicit about these things. A DMLex implementor can set up an inventory
of types for relations between senses of the same entry, with types such
as specialization , metaphoricalExtension and others, and lexicographers can
use them to describe how the senses of each entry are related to one another.
Then, during display-time, some of these relations can be configured to
trigger the software into rearranging the senses into a hierarchy, while others
can remain invisible to the user but still available for automated tasks in NLP,
for statistical analysis and so on.

7.3.6 Separation of form and meaning

DMLex enforces a strict separation between the formal properties of
headwords (their orthography, morphology and phonology) and their
semantic properties (their meaning and usage). The former is always
recorded at the entry-level (as properties of the entry object) and the latter
always at the sense-level (as properties of the sense object). This is far from
common in lexicography. Dictionaries sometimes have part-of-speech labels
attached to individual senses rather than to the entire entry, or sense-specific
inflected forms of the headword attached to individual senses. Such things are
prohibited in DMLex, for reasons which – as mentioned several times before
– have to do with avoiding processing complexity. It makes things easier for
IT tasks if it can be guaranteed that all the formal properties of the headword
are at the entry-level and that no exceptions or overrides await further down
inside the entry.

All of this does not mean that sense-specific formal properties cannot be
expressed in DMLex. They can, but it has to be done differently. For example,
let’s assume a lexicographer wants to describe the headword walk which is
both a verb and a noun. The typical approach in (English) lexicography is
to create a single entry for this headword with one sense for the verb and
another for the noun, like in Figure 7-14.

7 On the design of DMLex

128

Figure 7-14 An entry with sense-specific parts of speech

This cannot be done in DMLex because it violates the principle of form/
meaning separation. What can be done, however, is to use relations to
approximate this at display-time for the human end-user. The lexicographer
needs to create two separate entries for the two walks (which can be thought
of as effectively treating them as homonyms, or as “spreading” the headword
over two entries), connect the entries with a relation, and make sure the
software is programmed to handle this relation such that the on-screen
display looks almost like a single entry. Figure 7-15 shows the model and
Figure 7-16 shows what the end-user might see.

Figure 7-15 How DMLex models a headword spread over two entries

7 On the design of DMLex

129

Figure 7-16 A possible rendering of a headword spread over two entries

By remodelling the situation this way, we lose almost nothing compared to
Figure 7-14: the user is still able to see both the verb and the noun
simultaneously, in something that resembles a single entry. But internally, the
verb and the noun are represented as separate entries, which makes the data
more easily usable for machine applications.

7.4 Conclusion: towards a data-centric
lexicography of the future

The main contribution of DMLex is that it is a departure from representing
the view model of a dictionary entry towards representing the domain model
of an entire dictionary. XML-based dictionary schemas can be understood as
view models: they only represent the fact that, for example, a cross-reference
exists from entry A to entry B and another cross-reference exists from entry B
to entry A, but they make no attempt to represent the relation that motivates
the two cross-references. DMLex makes this attempt. Therefore, DMLex is a
“deeper” model than the likes of TEI Lex-0: it is a domain model from which
a human-user’s view of an individual entry – the view model – can be derived
on demand.

So, DMLex can be understood as a contribution to a deep digitisation of
lexicography (as defined in Section 2.5). Until now, digital lexicography has
been mainly about modelling the views, about text encoding: a superficial
form of digitisation. DMLex shows the way towards a more deeply digitised,
data-centric lexicography of the future where dictionaries are modelled using
domain models which leave no important fact unrepresented. So far, when
modellers have made attempts in that direction, the result has often been a

7 On the design of DMLex

130

data model which represents a lexicon well for NLP applications but brings
inconvenient trade-offs for human users. The ambition of DMLex is to be a
good domain model of a dictionary without compromising on the primary goal
of human-oriented lexicograhy: satisfying the information needs of human
users.

7 On the design of DMLex

131

7 On the design of DMLex

132

Epilogue
In the prologue to this thesis I mentioned how my career in computational
lexicography has given me a chance to develop the thinking captured in this
thesis. Although the thesis is an important milestone, it is not the end of the
journey. How are the two innovations introduced here – NVH and DMLex –
likely to develop in the future?

The next logical step for NVH would be to standardise the language, to write
a full and formal specification. This has not been necessary so far while
the user community is small, but may become necessary if and when the
language becomes adopted more widely. But will it? That depends, among
other things, on whether use-cases can be found for it in disciplines other
than lexicography. Is NVH’s support for headedness a strong enough selling
point outside lexicography? If it turns out that headedness is unique to
lexicography, then NVH will join the ranks of the many Domain-Specific
Languages (DSLs: Voelter 2013, Boersma 2020) in existence. If, on the other
hand, it transpires that headedness is common in other disciplines too, what
will that mean for the language? Will NVH need to be extended with
additional features to meet the needs of other disciplines, and can that be
done without the language becoming over-complicated?

As for DMLex, this thesis is being written at a time when the specification
has not been fully approved yet: it is now a “Draft 02”. But I do not see any
obstacles to getting DMLex through to a fully endorsed OASIS specification
soon. The main challenge will come after that: how will the industry welcome
it, who and how will implement it?1 But more importantly, it will be
interesting to observe whether and how DMLex is going to influence the
thinking of software engineers about lexicographic data models. In a sense,
this is a more important goal than concrete implementations. Even if nobody
ever produces a fully faithful implementation of DMLex, it will still be a
success if DMLex comes to be used as a source of inspiration, as a catalog of
reusable design patterns for future builders of dictionary writing systems.

1 Besides Lexical Computing which is already preparing a new version of Lexonomy
where DMLex will be one of the templates available when setting up a new dictionary.

133

Human-oriented lexicography is an exciting discipline to be in right now.
After a long stagnation in a superficially digitised, text encoding-style mode
of operation, it is finally on its way to a future where dictionaries can fully
exploit the possibilities of the digital medium. I hope that my thesis has been
a valuable contribution to that transformation.

Epilogue

134

Author’s publications
This is a structured and commented list of publications I have authored and
talks I have given that are relevant to this thesis. The list can be understood
as a timeline of sorts for the ideas that eventually culminated in this thesis.
Only publications and talks where I am the main or only author are included.

On the digital transformation in lexicography

(2022) Za námi mnoho, před námi ještě víc: digitalizace lexikografie včera, dnes
a zítra: talk at Institute of the Czech National Corpus in Prague. Chapter 2 is an
updated version of this talk.

On digital dictionary publishing

(2021) Lexicographic APIs: the state of the art: talk at eLex conference (held
online). A survey of how dictionary publishers are struggling to redefine
themselves as “content providers”. Video: https://youtu.be/NVFd-RM1aWo

(2017) How (not) to build a European Dictionary Portal: talk at a conference of
the European Network of e-Lexicography in Leiden. Discusses the
challenges of online dictionary aggregation, related to Section 2.4 here.
Video: https://www.youtube.com/watch?v=ORrGelo9ytU

(2017) Towards a Metadata Infrastructure for Online Dictionaries: talk at an
event of European Network of e-Lexicography in Budapest. Another
discussion of the challenges of online dictionary aggregation.
https://www.lexiconista.com/pdf/towards-infrastructure.pdf

(2016) Things to think about when building a dictionary website: talk at an
event of European Network of e-Lexicography in Barcelona. A look at
dictionary websites from a usability point of view.

(2008) Giving them what they want: search strategies for electronic
dictionaries: paper at EURALEX Congress in Barcelona. Discusses the
challenges of building an actually useful search engine for a dictionary
website.

135

https://youtu.be/NVFd-RM1aWo
https://www.youtube.com/watch?v=ORrGelo9ytU
https://www.lexiconista.com/pdf/towards-infrastructure.pdf

On dictionary writing systems and the dictionary-making
process

(2019) The future of dictionary editing: invited talk at Lexicom training event
in Mikulov.

(2017) Introducing Lexonomy: an open-source dictionary writing and
publishing system: paper at eLex conference in Leiden. This paper
introduced the open-source dictionary writing systems I had created a
year earlier, now maintained by Lexical Computing.
https://www.lexiconista.com/pdf/elex2017.pdf

On XML, NVH and other data languages in lexicography

(2023) Lexicography versus XML: talk at Declarative Amsterdam which
summarizes the Better than XML paper below. Video:
https://www.youtube.com/watch?v=xzFneIBu0jA

(2023) Better than XML: Towards a lexicographic markup language: article in
Data & Knowledge Engineering (volume 146) which – among other things –
introduces NVH. Chapter 3 and parts of Chapter 4 are based on this article.
https://doi.org/10.1016/j.datak.2023.102196

(2021) Help, my XML is too complex! The problem of excessive structural
markup in dictionaries: talk at EURALEX Congress (held online). An early
version of my ideas about the inherent “headedness” of lexicographic
content. Video: https://videolectures.net/
euralex2021_mechura_structural_markup/

On lexicographic data modelling

(2023) Avoiding Recursion in the Representation of Subsenses and Subentries in
Dictionaries: article in International Journal Of Lexicography (volume 36,
number 3). Chapter 6 is an edited version of this article. https://doi.org/
10.1093/ijl/ecad012

(2022) Document or database? The search for the perfect storage paradigm for
lexical data: talk at EURALEX Congress in Mannheim which discusses the
relative advantages and disadvantages of tree-structured versus graph-

Author’s publications

136

https://www.lexiconista.com/pdf/elex2017.pdf
https://www.youtube.com/watch?v=xzFneIBu0jA
https://doi.org/10.1016/j.datak.2023.102196
https://videolectures.net/euralex2021_mechura_structural_markup/
https://videolectures.net/euralex2021_mechura_structural_markup/
https://doi.org/10.1093/ijl/ecad012
https://doi.org/10.1093/ijl/ecad012

structured data models. Video: http://videolectures.net/
euralex2022_mechura_document_database/

(2021) What programmers want: avoiding recursion in dictionary schemas: talk
at eLex conference (held online). An early version of my ideas about
recursion which later developed into the Avoiding Recursion article above
and Chapter 6 here. Video: https://www.youtube.com/watch?v=hHiflt6O8zg

(2019) Shareable Subentries in Lexonomy as a Solution to the Problem of
Multiword Item Placement: paper at EURALEX Congress in Ljubljana. An
early attempt to implement a hybrid, partially tree-structured and
partially graph-based data model in a dictionary writing system.

(2016) Data Structures in Lexicography: from Trees to Graphs: paper at
RASLAN (Recent Advances in Slavonic Natural Language Processing)
conference. An early version of my thinking about graph-based structures
in lexicography. https://www.lexiconista.com/pdf/raslan2016.pdf

On DMLex

(2024) Data Model for Lexicography (DMLex) Version 1.0, Committee
Specification Draft 02 (with LEXIDMA colleagues): the current version of
DMLex at the time of writing. https://docs.oasis-open.org/lexidma/dmlex/
v1.0/csd02/dmlex-v1.0-csd02.pdf

(2023) Relations, relations everywhere: an introduction to the DMLex data
model (with Simon Krek, Carole Tiberius, Miloš Jakubíček and Tomaž
Erjavec): talk at eLex conference in Brno which introduces DMLex to the
wider lexicographic community. Video: https://youtu.be/b6Lkv-3D5C0

(2022) DMLex, a data model for lexicography: an example-by-example
introduction (with Simon Krek): talk at an ELEXIS event in Florence which
introduces an earlier draft of DMLex. Video: https://videolectures.net/
elexisevent2020_krek_dmlex_oasis/

Author’s publications

137

http://videolectures.net/euralex2022_mechura_document_database/
http://videolectures.net/euralex2022_mechura_document_database/
https://www.youtube.com/watch?v=hHiflt6O8zg
https://www.lexiconista.com/pdf/raslan2016.pdf
https://docs.oasis-open.org/lexidma/dmlex/v1.0/csd02/dmlex-v1.0-csd02.pdf
https://docs.oasis-open.org/lexidma/dmlex/v1.0/csd02/dmlex-v1.0-csd02.pdf
https://youtu.be/b6Lkv-3D5C0
https://videolectures.net/elexisevent2020_krek_dmlex_oasis/
https://videolectures.net/elexisevent2020_krek_dmlex_oasis/

Author’s publications

138

References
All URLs have been verified as valid as of 31 March 2024.

Abel, A. (2022) ‘Dictionary writing systems’, in: Hanks, P.; de Schryver, GM.
(ed.) International Handbook of Modern Lexis and Lexicography, Springer,
https://doi.org/10.1007/978-3-642-45369-4_111-1

Apresjan, J. D. (1974) ‘Regular Polysemy’, in: Linguistics, vol. 12, no. 142, pp.
5–32. https://doi.org/doi:10.1515/ling.1974.12.142.5

Atkins, B. T.; Rundell, Michael (2008) The Oxford Guide to Practical
Lexicography, Oxford University Press.

Baisa, V.; Blahuš, M.; Cukr, M.; Herman, O.; Jakubíček, M.; Kovář, V.; Medveď,
M.; Měchura, M.; Rychlý, P.; Suchomel, V. (2019) ‘Automating dictionary
production: a Tagalog-English-Korean dictionary from scratch’, in:
Kosem, I.; Zingano Kuhn, T.; Correia, M.; Ferreria, J. P.; Jansen, M.; Pereira,
I.; Kallas, J.; Jakubíček, M.; Krek, S.; Tiberius, C. (ed.) Proceedings of eLex 2019,
Lexical Computing, pp. 805–818. https://elex.link/elex2019/wp-content/
uploads/2019/09/eLex_2019_45.pdf

Bergenholtz, Henning; Nielsen, Jesper Skovgård (2013) ‘What is a
Lexicographical Database?’, in: Lexikos, vol. 23. https://doi.org/10.5788/
23-1-1205

Boersma, Meinte (2020) Building User-Friendly DSLs, Manning, ISBN
9781617296475 https://www.manning.com/books/building-user-friendly-dsls

Bogaards, P. (1990,) ‘Où cherche-t-on dans le dictionnaire ?’, in:
International Journal of Lexicography, vol. 3, no. 2, pp. 79–102.

Boguraev, Bran; Briscoe, Ted (1987) ‘Large Lexicons for Natural Language
Processing: Utilising the Grammar Coding System of LDOCE’, in:
Computational Linguistics, vol. 13, nos. 3-4, pp. 203–218.
https://aclanthology.org/J87-3002/

Bourhis, Pierre; Reutter, Juan L.; Vrgoč, Domagoj (2020) ‘JSON: Data model
and query languages’, in: Information Systems, vol. 89. 10.1016/
j.is.2019.101478

139

https://doi.org/10.1007/978-3-642-45369-4_111-1
https://doi.org/doi:10.1515/ling.1974.12.142.5
https://elex.link/elex2019/wp-content/uploads/2019/09/eLex_2019_45.pdf
https://elex.link/elex2019/wp-content/uploads/2019/09/eLex_2019_45.pdf
https://doi.org/10.5788/23-1-1205
https://doi.org/10.5788/23-1-1205
https://www.manning.com/books/building-user-friendly-dsls
https://aclanthology.org/J87-3002/
10.1016/j.is.2019.101478
10.1016/j.is.2019.101478

Carlson, Kristofer J. (2007) ‘The Case Against XML’,
http://www.krisandsusanna.com/Documents/the-case-against-xml.pdf

Convery, Cathal; Ó Mianáin, Pádraig; Ó Raghallaigh, Muiris; Atkins, Sue;
Kilgarriff, Adam; Rundell, Michael (2010) ‘The DANTE database (Database
of ANalysed Texts of English)’, in: Dykstra, Anne; Schoonheim, Tanneke
(ed.) Proceedings of the 14th EURALEX international congress, Fryske Akademy,
pp. 293–295. https://euralex.org/publications/the-dante-database-
database-of-analysed-texts-of-english/

Croft, William; Cruse, D. Alan (2004) Cognitive Linguistics, Cambridge
University Press.

DARIAH (2021) TEI Lex-0: A baseline encoding for lexicographic data, version
0.9.1, https://dariah-eric.github.io/lexicalresources/pages/TEILex0/
TEILex0.html

de Schryver, Gilles-Maurice (2023) ‘Generative AI and Lexicography: The
Current State of the Art Using ChatGPT’, in: International Journal of
Lexicography. https://doi.org/10.1093/ijl/ecad021

De Schryver, G.-M.; Joffe, D.; Joffe, P.; Hillewaert, S. (2006) ‘Do dictionary
users really look up frequent words? On the overestimation of the
value of corpus-based lexicography’, in: Lexikos, vol. 16, pp. 67–83.

ECMA 404 – The JSON data interchange syntax, http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

Erjavec, Tomaž; Evans, Roger; Ide, Nancy; Kilgarriff, Adam (2000) ‘The
Concede Model for Lexical Databases.’, in: Proceedings of LREC 2000,
European Language Resources Association. http://www.lrec-conf.org/
proceedings/lrec2000/pdf/335.pdf

Erlandsen, Jens (2010) ‘iLEX, a general system for traditional dictionaries
on paper and adaptive electronic lexical resources’, in: Dykstra, Anne;
Schoonheim, Tanneke (ed.) Proceedings of the 14th EURALEX international
congress, Fryske Akademy, p. 306. https://euralex.org/publications/ilex-a-
general-system-for-traditional-dictionaries-on-paper-and-adaptive-

electronic-lexical-resources/

References

140

http://www.krisandsusanna.com/Documents/the-case-against-xml.pdf
https://euralex.org/publications/the-dante-database-database-of-analysed-texts-of-english/
https://euralex.org/publications/the-dante-database-database-of-analysed-texts-of-english/
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://doi.org/10.1093/ijl/ecad021
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/335.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/335.pdf
https://euralex.org/publications/ilex-a-general-system-for-traditional-dictionaries-on-paper-and-adaptive-electronic-lexical-resources/
https://euralex.org/publications/ilex-a-general-system-for-traditional-dictionaries-on-paper-and-adaptive-electronic-lexical-resources/
https://euralex.org/publications/ilex-a-general-system-for-traditional-dictionaries-on-paper-and-adaptive-electronic-lexical-resources/

Francopoulo, Gil; George, Monte (2013) ‘Chapter 2: Model Description’, in:
Francopoulo, Gil (ed.) LMF: Lexical Markup Framework, ISTE/Wiley, ISBN
978-1-84821-430-9.

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John (1995) Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
ISBN 0201633612.

Goldfarb, Charles F.; Rubinsky, Yuri (1990) The SGML Handbook, Clarendon
Press/Oxford University Press,.

Green, T. R. G. (1989) ‘Cognitive Dimensions of Notations’, in: Sutcliffe, A.;
Macaulay, L. (ed.) People and Computers V: Proceedings of the Fifth Conference of
the British Computer Society, Cambridge University Press, pp. 443–460.
https://citeseerx.ist.psu.edu/

document?doi=4ca24a6a487c3fa92d60a17b760cc3515708896a

Green, T. R. G.; Petre, M. (1996) ‘Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework’, in: Journal of
Visual Languages & Computing, vol. 7, no. 2, pp. 131-174. https://doi.org/
10.1006/jvlc.1996.0009

Halpin, Terry; Morgan, Tony (2008) Information Modeling and Relational
Databases, Elsevier, https://doi.org/10.1016/B978-0-12-373568-3.X5001-2
ISBN 978-0-12-373568-3.

Horák, Aleš; Rambousek, Adam (2018) ‘Lexicography and Natural Language
Processing’, in: Fuertes-Olivera, Pedro A. (ed.) The Routledge Handbook of
Lexicography, pp. 179–196.

Ide, Nancy; Kilgarriff, Adam; Romary, Laurent (2000) ‘A formal model of
dictionary structure and content’, in: Heid, Ulrich; Evert, Stefan;
Lehmann, Egbert; Rohrer, Christian (ed.) Proceedings of the 9th EURALEX
International Congress, Universität Stuttgart, pp. 113-126.
https://euralex.org/publications/a-formal-model-of-dictionary-structure-

and-content/

ISO 12620-2:2022 – Management of terminology resources – Data categories –
Part 2: Repositories, https://www.iso.org/standard/79018.html

ISO 24613-1:2024 Language resource management: Lexical markup framework
(LMF), Part 1: Core model, https://www.iso.org/standard/82014.html

References

141

https://citeseerx.ist.psu.edu/document?doi=4ca24a6a487c3fa92d60a17b760cc3515708896a
https://citeseerx.ist.psu.edu/document?doi=4ca24a6a487c3fa92d60a17b760cc3515708896a
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1016/B978-0-12-373568-3.X5001-2
https://euralex.org/publications/a-formal-model-of-dictionary-structure-and-content/
https://euralex.org/publications/a-formal-model-of-dictionary-structure-and-content/
https://www.iso.org/standard/79018.html
https://www.iso.org/standard/82014.html

ISO 24613-2:2020 Language resource management: Lexical markup framework
(LMF), Part 2: Machine-readable dictionary (MRD) model,
https://www.iso.org/standard/75407.html

ISO 8879:1986 – Standard Generalized Markup Language (SGML),
https://www.iso.org/standard/16387.html

ISO/IEC 21778:2017 – The JSON data interchange syntax, https://www.iso.org/
standard/71616.html

Iverson, Kenneth E. (1980) ‘Notation as a Tool of Thought’, in:
Communications of the ACM, vol. 23, no. 8. https://doi.org/10.1145/
358896.358899

Jakubíček, M.; Měchura, M.; Kovář, V.; Rychlý, P. (2018) ‘Practical Post-
Editing Lexicography with Lexonomy and Sketch Engine’, in: Čibej,
Jaka; Gorjanc, Vojko; Kosem, Iztok; Krek, Simon (ed.) Book of Abstracts of the
18th EURALEX International Congress, Ljubljana University Press, pp. 65–67.
https://euralex.org/wp-content/uploads/2022/04/ABS2018.pdf

Jakubíček, Miloš; Kovář, Vojtěch; Rychlý, Pavel (2021) ‘Million-Click
Dictionary: Tools and Methods for Automatic Dictionary Drafting and
Post-Editing’, in: Gavriilidou, Zoe; Mitits, Lydia; Kiosses, Spyros (ed.) Book
of Abstracts of the 19th EURALEX International Congress, Democritus
University of Thrace, pp. 65–67. https://euralex.org/wp-content/uploads/
2022/04/ABS2020.pdf

Kilgarriff, Adam; Rychlý, Pavel; Smrž, Pavel; Tugwell, David (2004) ‘The
Sketch Engine’, in: Williams, Geoffrey; Vessier, Sandra (ed.) Proceedings of
the 11th EURALEX International Congress, Universite ́de Bretagne-Sud, pp.
105–116. https://euralex.org/publications/the-sketch-engine/

Kilgarriff, Adam; Kovář, Vojtěch; Rychlý, Pavel (2010) ‘Tickbox
Lexicography’, in: Granger, Sylviane; Paquot, Magali (ed.) Proceedings of
eLex 2009, Presses universitaires de Louvain, pp. 411–418.
http://pul.uclouvain.be/Resources/titles/29303100621500/extras/

82577-Cental-Fairon-cahier7-INT-V3.pdf

Kilgarriff, Adam; Baisa, Vít; Bušta, Jan; Jakubíček, Miloš; Kovář, Vojtěch;
Michelfeit, Jan; Rychlý, Pavel; Suchomel, Vít (2014) ‘The Sketch Engine:
ten years on’, in: Lexicography, vol. 1, pp. 7–36.

References

142

https://www.iso.org/standard/75407.html
https://www.iso.org/standard/16387.html
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://doi.org/10.1145/358896.358899
https://doi.org/10.1145/358896.358899
https://euralex.org/wp-content/uploads/2022/04/ABS2018.pdf
https://euralex.org/wp-content/uploads/2022/04/ABS2020.pdf
https://euralex.org/wp-content/uploads/2022/04/ABS2020.pdf
https://euralex.org/publications/the-sketch-engine/
http://pul.uclouvain.be/Resources/titles/29303100621500/extras/82577-Cental-Fairon-cahier7-INT-V3.pdf
http://pul.uclouvain.be/Resources/titles/29303100621500/extras/82577-Cental-Fairon-cahier7-INT-V3.pdf

Kipfer, Barbara A. (1983) ‘Methods of Ordering Senses Within Entries’, in:
Allén, Sture; Corbin, Pierre; Hartmann, Reinhard R. K.; Hausmann, Franz
Josef; Kromann, Hans-Peder; Reichmann, Oskar; Zgusta, Ladislav (ed.)
Proceedings of the 1st EURALEX International Congress, Max Niemeyer Verlag,
pp. 101–108. https://euralex.org/publications/methods-of-ordering-senses-
within-entries/

Kovář, Vojtěch; Močiariková, Monika; Rychlý, Pavel (2016) ‘Finding
Definitions in Large Corpora with Sketch Engine’, in: Calzolari,
Nicoletta; Choukri, Khalid; Declerck, Thierry; Goggi, Sara; Grobelnik,
Marko; Maegaard, Bente; Mariani, Joseph; Mazo, Hélène; Moreno,
Asunción; Odijk, Jan; Piperidis, Stelios (ed.) Proceedings of LREC 2016,
European Language Resources Association, pp. 391–394. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/353_Paper.pdf

Levesque, Hector J.; Brachman, Ronald J. (1985) ‘A Fundamental Trade-off
in Knowledge Representation and Reasoning’, in: Levesque, Hector J.;
Brachman, Ronald J. (ed.) Readings in Knowledge Representation, pp. 41−68.
https://www.seas.upenn.edu/~cis7000a/Spring19/localpapers/brlevesque.pdf

Lew, Robert (2013) ‘Identifying, Ordering and Defining Senses’, in: Jackson,
Howard (ed.) The Bloomsbury Companion to Lexicography, pp. 284–302,
Bloomsbury Academic, ISBN 9781441145970.

Lew, Robert (2023) ‘ChatGPT as a COBUILD lexicographer’, in: Humanities
and Social Sciences Communications, vol. 10. https://doi.org/10.1057/
s41599-023-02119-6

Lew, Robert; de Schryver, Gilles-Maurice (2014) ‘Dictionary Users in the
Digital Revolution’, in: International Journal of Lexicography, vol. 27, pp.
341–359. https://doi.org/10.1093/ijl/ecu011

Lew, R.; Wolfer, S (2024a) ‘What Lexical Factors Drive Look-Ups in the
English Wiktionary?’, in: SAGE Open, vol. 14,. https://doi.org/10.1177/
21582440231219101

Lew, R.; Wolfer, S (2024b) ‘CEFR vocabulary level as a predictor of user
interest in English Wiktionary entries’, in: Humanities and Social Sciences
Communications, vol. 11. https://doi.org/10.1057/s41599-024-02838-4

References

143

https://euralex.org/publications/methods-of-ordering-senses-within-entries/
https://euralex.org/publications/methods-of-ordering-senses-within-entries/
http://www.lrec-conf.org/proceedings/lrec2016/pdf/353_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/353_Paper.pdf
https://www.seas.upenn.edu/~cis7000a/Spring19/localpapers/brlevesque.pdf
https://doi.org/10.1057/s41599-023-02119-6
https://doi.org/10.1057/s41599-023-02119-6
https://doi.org/10.1093/ijl/ecu011
https://doi.org/10.1177/21582440231219101
https://doi.org/10.1177/21582440231219101
https://doi.org/10.1057/s41599-024-02838-4

Lew, R.; Frankenberg-Garcia, A.; Rees, G.; Roberts, J.; Sharma, N. (2018)
‘ColloCaid: A real-time tool to help academic writers with English
collocations’, in: Čibej, Jaka; Gorjanc, Vojko; Kosem, Iztok; Krek, Simon
(ed.) Proceeedings of the 18th EURALEX International Congress, Ljubljana
University Press, pp. 247–254. https://euralex.org/wp-content/uploads/
2022/04/ABS2018.pdf

Maks, E.; Tiberius, C.; van Veenendaal, R. (2009) ‘Standardising Bilingual
Lexical Resources According to the Lexicon Markup Framework’, in:
Proceedings of LREC 2008, European Language Resources Association.
https://research.vu.nl/en/publications/standardising-bilingual-lexical-

resources-according-to-the-lexico

Měchura, Michal (2016) ‘Data Structures in Lexicography: From Trees to
Graphs’, in: Horák, Aleš; Rychlý, Pavel; Rambousek, Adam (ed.) Proceedings
of Workshop Recent Advances in Slavonic Natural Language Processing, Tribun
EU, pp. 97–104. https://michmech.github.io/pdf/raslan2016.pdf

Měchura, Michal (2017) ‘Introducing Lexonomy: an open-source
dictionary writing and publishing system’, in: Kosem, Iztok; Kallas,
Jelena; Tiberius, Carole; Krek, Simon; Jakubíček, Miloš; Baisa, Vít (ed.)
Proceedings of eLex 2017, Lexical Computing, pp. 662–679. https://elex.link/
elex2017/wp-content/uploads/2017/09/paper41.pdf

Měchura, Michal (2017) ‘How (not) to build a European Dictionary Portal’,
Final Conference of the European Network of e-Lexicography,
https://www.youtube.com/watch?v=ORrGelo9ytU

Medveď, M.; Měchura, M.; Tiberius, C.; Kosem, I.; Kallas, J.; Jakubíček, M.;
Krek, S. (ed.) (2023) Electronic lexicography in the 21st century: Invisible
Lexicography, Proceedings of the eLex 2023 conference, https://elex.link/
elex2023/proceedings-download/

Nesi, Hilary ‘The demands of users and the publishing world: printed or
online, free or paid for?’, in: Durkin, P. (ed.) The Oxford Handbook of
Lexicography, Oxford University Press, ISBN 9780199691630.

Nurseitov, Nurzhan; Paulson, Michael; Reynolds, Randall; Izurieta, Clemente
(2009) ‘Comparison of JSON and XML data interchange formats: a case
study’, in: Proceedings of the ISCA 22nd International Conference on Computer

References

144

https://euralex.org/wp-content/uploads/2022/04/ABS2018.pdf
https://euralex.org/wp-content/uploads/2022/04/ABS2018.pdf
https://research.vu.nl/en/publications/standardising-bilingual-lexical-resources-according-to-the-lexico
https://research.vu.nl/en/publications/standardising-bilingual-lexical-resources-according-to-the-lexico
https://michmech.github.io/pdf/raslan2016.pdf
https://elex.link/elex2017/wp-content/uploads/2017/09/paper41.pdf
https://elex.link/elex2017/wp-content/uploads/2017/09/paper41.pdf
https://www.youtube.com/watch?v=ORrGelo9ytU
https://elex.link/elex2023/proceedings-download/
https://elex.link/elex2023/proceedings-download/

Applications in Industry and Engineering, pp. 157–162.
https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf

OASIS (2024) Data Model for Lexicography (DMLex) Version 1.0, Committee
Specification Draft 02, https://docs.oasis-open.org/lexidma/dmlex/v1.0/
csd02/dmlex-v1.0-csd02.pdf

Ogbuji, Uche (2004) ‘Considering container elements: When to use
elements to wrap structures of other elements’, in: Principles of XML
design, IBM, https://web.archive.org/web/20130301083942/
https://www.ibm.com/developerworks/library/x-contain/index.html

Pemberton, Steven (2017) ‘On the Descriptions of Data: The Usability of
Notations’, in: Proceedings of XML Prague 2017, pp. 143–159.
https://archive.xmlprague.cz/2017/files/

xmlprague-2017-proceedings.pdf#d6e3022

Pemberton, Steven (2023) ‘The Printing Press vs The Web: The Effects’, The
Web Conference, https://homepages.cwi.nl/~steven/Talks/2023/
05-02-webconf/

Petzold, Charles (2000) Code: The Hidden Language of Computer Hardware and
Software, Microsoft Press, ISBN 9780735611313.

Rambousek, Adam; Jakubíček, Miloš; Kosem, Iztok (2021) ‘New
developments in Lexonomy’, in: Kosem, I.; Cukr, M.; Jakubíček, M.; Kallas,
J.; Krek, S.; Tiberius, C. (ed.) Proceedings of eLex 2021, pp. 455–462.
https://elex.link/elex2021/wp-content/uploads/2021/08/

eLex_2021_28_pp455-462.pdf

Ross, Jeanne W.; Beath, Cynthia M.; Mocker, Martin (2021) Designed for
Digital: How to Architect Your Business for Sustained Success, The MIT
Press, ISBN 9780262542760.

Rundell, Michael; Atkins, Sue (2011) ‘The DANTE database: a User Guide’,
in: Kosem, Iztok; Kosem, Karmen (ed.) Proceedings of eLex 2011, Trojina,
Institute for Applied Slovene Studies, pp. 233–246.
https://elex2011.trojina.si/Vsebine/proceedings/eLex2011-32.pdf

References

145

https://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
https://docs.oasis-open.org/lexidma/dmlex/v1.0/csd02/dmlex-v1.0-csd02.pdf
https://docs.oasis-open.org/lexidma/dmlex/v1.0/csd02/dmlex-v1.0-csd02.pdf
https://web.archive.org/web/20130301083942/https://www.ibm.com/developerworks/library/x-contain/index.html
https://web.archive.org/web/20130301083942/https://www.ibm.com/developerworks/library/x-contain/index.html
https://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e3022
https://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#d6e3022
https://homepages.cwi.nl/~steven/Talks/2023/05-02-webconf/
https://homepages.cwi.nl/~steven/Talks/2023/05-02-webconf/
https://elex.link/elex2021/wp-content/uploads/2021/08/eLex_2021_28_pp455-462.pdf
https://elex.link/elex2021/wp-content/uploads/2021/08/eLex_2021_28_pp455-462.pdf
https://elex2011.trojina.si/Vsebine/proceedings/eLex2011-32.pdf

Sinclair, John McHardy (ed.) (1987) Looking up: An account of the COBUILD
project in lexical computing and the development of the Collins COBUILD
English language dictionary, Collins ELT.

Stará, Marie (2019) Automatická tvorba definic z korpusu, Master's thesis,
Masaryk University, https://is.muni.cz/th/i9wm5

Tarp, Sven (2008) Lexicography in the Borderland Between Knowledge and
Non-Knowledge: General Lexicographical Theory with Particular Focus on
Learner's Lexicography, Max Niemeyer Verlag.

Tavast, Arvi; Langemets, Margit; Kallas, Jelena; Koppel, Kristina (2018)
‘Unified Data Modelling for Presenting Lexical Data: The Case of
EKILEX’, in: Čibej, Jaka; Gorjanc, Vojko; Kosem, Iztok; Krek, Simon (ed.)
Proceeedings of the 18th EURALEX International Congress, Ljubljana University
Press, pp. 749–761. https://euralex.org/publications/unified-data-
modelling-for-presenting-lexical-data-the-case-of-ekilex/

TEI Consortium (2007) TEI P5: Guidelines for Electronic Text Encoding and
Interchange, https://tei-c.org/Guidelines/P5/

Teorey, Tobey; Lightstone, Sam; Nadea, Tom; Jagadish, H. V. (2011) Database
modeling and design: logical design, Morgan Kaufmann/Elsevier, ISBN
978-0-12-382020-4.

Tiberius, Carole; Krek, Simon; Depuydt, Katrien; Gantar, Polona; Kallas,
Jelena; Kosem, Iztok; Rundell, Michael (2021) ‘Towards the ELEXIS data
model: defining a common vocabulary for lexicographic resources’, in:
Kosem, I.; Cukr, M.; Jakubíček, M.; Kallas, J.; Krek, S.; Tiberius, C. (ed.)
Proceedings of eLex 2021, pp. 56–77. https://elex.link/elex2021/wp-content/
uploads/2021/08/eLex_2021_03_pp56-77.pdf

Tiberius, Carole; Munda, Tina; Repar, Andraz; Krek, Simon (2022) ‘ELEXIS
Deliverable D1.6: Lexicographic data in ELEXIS’, https://elex.is/wp-
content/uploads/ELEXIS_D1_6_Lexicographic_data_in_ELEXIS.pdf

Voelter, Markus (2013) DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages, self-published, http://voelter.de/dslbook/
markusvoelter-dslengineering-1.0.pdf

Vossen, Piek; Maks, Isa; Segers, Roxane; Vliet, Hennie van der; Moens, Marie-
Francine; Hofmann, Katja; Sang, Erik Tjong Kim; de Rijke, Maarten (2012)

References

146

https://is.muni.cz/th/i9wm5
https://euralex.org/publications/unified-data-modelling-for-presenting-lexical-data-the-case-of-ekilex/
https://euralex.org/publications/unified-data-modelling-for-presenting-lexical-data-the-case-of-ekilex/
https://tei-c.org/Guidelines/P5/
https://elex.link/elex2021/wp-content/uploads/2021/08/eLex_2021_03_pp56-77.pdf
https://elex.link/elex2021/wp-content/uploads/2021/08/eLex_2021_03_pp56-77.pdf
https://elex.is/wp-content/uploads/ELEXIS_D1_6_Lexicographic_data_in_ELEXIS.pdf
https://elex.is/wp-content/uploads/ELEXIS_D1_6_Lexicographic_data_in_ELEXIS.pdf
http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf
http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf

‘Cornetto: A Combinatorial Lexical Semantic Database for Dutch’, in:
Spyns, Peter; Odijk, Jan (ed.) Essential Speech and Language Technology for
Dutch: Results by the STEVIN programme, Springer, pp. 165–184.
https://doi.org/10.1007/978-3-642-30910-6_10

W3C (2008) Extensible Markup Language (XML) 1.0, https://www.w3.org/TR/
2008/REC-xml-20081126/

W3C (2016) Lexicon Model for Ontologies: Community Report, 10 May 2016,
https://www.w3.org/2016/05/ontolex/

W3C (2019) The OntoLex Lemon Lexicography Module: Community Report, 17
September 2019, https://www.w3.org/2019/09/lexicog/

Ernst Wiegand, Herbert (1989) ‘Der Begriff der Mikrostruktur: Geschichte,
Probleme, Perspektiven’, in: Wörterbücher: Ein internationales Handbuch zur
Lexikographie, de Gruyter, pp. 409–462.

YAML Ain’t Markup Language (YAML) version 1.2, Revision 1.2.2,
https://yaml.org/spec/1.2.2/

References

147

https://doi.org/10.1007/978-3-642-30910-6_10
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/2016/05/ontolex/
https://www.w3.org/2019/09/lexicog/
https://yaml.org/spec/1.2.2/

	Prologue
	Acknowledgements
	I Context
	1 Introduction to human-oriented lexicography
	1.1 What is a dictionary?
	1.1.1 Dictionaries versus “language resources”
	1.1.2 Dictionaries versus “lexical databases”

	1.2 What is inside a dictionary?
	1.2.1 Entries and headwords
	1.2.2 Senses

	1.3 Making dictionaries machine-readable

	2 A short history of digitisation in lexicography
	2.1 From citation slips to corpus query systems
	2.2 Rise of the robot lexicographers
	2.3 Dictionary writing systems and what is inside them
	2.4 The future of human-dictionary interaction
	2.5 Summary: digitisation deep and shallow

	II Data languages
	3 Lexicography versus XML
	3.1 Introduction: dictionaries and XML
	3.2 The dark side of XML in lexicography
	3.2.1 Purely structural markup and matryoshkization
	3.2.2 Matryoshkization versus your entry editor
	3.2.3 Matryoshkization versus schema migration
	3.2.4 Look-ahead matryoshkization
	3.2.5 Summary: XML in lexicography

	3.3 Patterns of purely structural markup
	3.3.1 The ‘list’ pattern of purely structural markup
	3.3.2 The ‘headed’ pattern of purely structural markup

	3.4 The headedness of lexicographic data
	3.4.1 Translations are headed structures
	3.4.2 Example sentences are headed structures
	3.4.3 Collocations are headed structures
	3.4.4 Senses can be headed structures too
	3.4.5 Entries can be headed structures too

	3.5 How to encode headedness in XML
	3.5.1 Strategy 1: parentless sequencing
	3.5.2 Strategy 2: mixed content
	3.5.3 Strategy 3: children as attributes
	3.5.4 Strategy 4: heads as attributes
	3.5.5 Conclusion: headedness in XML

	3.6 How to encode headedness in other data languages
	3.6.1 Headedness in SGML
	3.6.2 Headedness in JSON
	3.6.3 Headedness in YAML
	3.6.4 Headedness in NVH

	3.7 Conclusion

	4 Towards a lexicographic data language
	4.1 The design of NVH
	4.1.1 A short introduction to the syntax of NVH
	4.1.2 Key differences between NVH and YAML

	4.2 Desiderata for a lexicographic data language
	4.2.1 Avoiding purely structural markup
	4.2.2 Headedness
	4.2.3 Explicit listing order
	4.2.4 Non-unique child names
	4.2.5 Inline markup
	4.2.6 Easily machine-processable
	4.2.7 Human-friendly
	4.2.8 Non-desiderata
	4.2.9 Scorecards

	4.3 Conclusion: notations matter

	III Data modelling
	5 Data models in lexicography
	5.1 Introduction: what are we modelling for?
	5.2 Data-modelling standards in lexicography
	5.2.1 TEI Lex-0
	5.2.2 LMF
	5.2.3 Ontolex Lemon
	5.2.4 DMLex
	5.2.5 Private schemas

	5.3 Design patterns in lexicography

	6 Avoiding recursion in the representation of subsenses and subentries
	6.1 Introduction
	6.1.1 What is a dictionary schema
	6.1.2 Modelling dictionary entries as tree structures
	6.1.3 Causes and types of recursion in dictionary schemas

	6.2 Subsensing
	6.2.1 What are subsenses for?
	6.2.2 What is wrong with recursive subsenses?
	6.2.3 The proposal
	6.2.4 Realistic example: sicher in DWDS

	6.3 Subentrying
	6.3.1 What are subentries for?
	6.3.2 Headword overriding
	6.3.3 What is and what is not overriding
	6.3.4 What is wrong with overriding?
	6.3.5 How dictionary schemas enable overriding
	6.3.6 The proposal
	6.3.7 Realistic example: sicher in DWDS

	6.4 Conclusion
	6.4.1 A new design pattern
	6.4.2 Advantages and disadvantages

	7 On the design of DMLex
	7.1 A map of the DMLex specification
	7.2 The thinking behind DMLex
	7.2.1 Does the world need another lexicographic data standard?
	7.2.2 What is a data model?
	7.2.3 What kind of data model is DMLex?
	7.2.4 The metamodel behind DMLex
	7.2.5 Relations, relations everywhere

	7.3 How DMLex models selected phenomena
	7.3.1 The basics: entries and senses
	7.3.2 Cross-references
	7.3.3 Multiple headwords per entry
	7.3.4 Placement of multi-word subentries
	7.3.5 Entry-internal sense relations
	7.3.6 Separation of form and meaning

	7.4 Conclusion: towards a data-centric lexicography of the future

	Epilogue
	Author’s publications
	References

